## Exercise 0:

Which relation is NOT a function?

$$
\begin{aligned}
& \{(1,-5),(3,1),(-5,4),(4,-2)\} \\
& \quad\{(2,7),(3,7),(4,7),(5,8)\} \\
& \{(1,-5),(-1,6),(1,5),(6,-3)\} \\
& \{(3,-2),(5,-6),(7,7),(8,8)\}
\end{aligned}
$$

## Exercise 1:

Which of the following relations $f: \mathbb{Q} \rightarrow \mathbb{Q}$ define a mapping? In each case, supply a reason why $f$ is or is not a mapping.

$$
\begin{aligned}
& f(p / q)=\frac{p+1}{p-2} \\
& f(p / q)=\frac{p}{p+q}
\end{aligned}
$$

## Exercise 2:

Determine which of the following functions are one-to-one and which are onto. If the function is not onto, determine its range

$$
\begin{gathered}
f: \mathbb{R} \rightarrow \mathbb{R} \text { defined by } f(x)=e^{x} \\
f: \mathbb{Z} \rightarrow \mathbb{Z} \text { defined by } f(n)=n^{2}+5 \\
f: \mathbb{R} \rightarrow \mathbb{R} \text { defined by } f(x)=\sin x \\
f: \mathbb{R} \rightarrow \mathbb{R} \text { defined by } f(x)=|x|+2
\end{gathered}
$$

## Exercise 3:

Find the inverse of the following functions:

$$
\begin{gathered}
f(x)=\frac{1}{2} x+7 \\
f(x)=(x-2)^{3}+1 \\
f(x)=\frac{1+2 x}{7+x}
\end{gathered}
$$

## Exercise 4:

Suppose that $f(x)=x^{2}-4 x+3$ and $g(x)=\sqrt{x+1}$. Determine the domain of $\mathrm{f}+\mathrm{g}$, $\mathrm{f}-\mathrm{g}, \mathrm{fg}$, and $\mathrm{f} / \mathrm{g}$.

## Exercise 5:

Define a function on real numbers by

$$
f(x)=\frac{x+1}{x-1}
$$

What are the domain and range of f ? What is the inverse of f ? compute $f \circ f^{-1}$ and $f^{-1} \circ f$

## Exercise 6:

What is the inverse of $f(x)=\ln \left(\frac{e^{x}}{e^{x}-1}\right)$ ? what is the domain of $f^{-1}$ ?

