Doan Nhat Quang

Elementary Data Structures

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi
ICTLab

Elementary Data Structures

Today Objectives

» Introduce the fundamental definitions in C/C++.

> Review elementary data types in programming such as array,
pointer, structure, enumeration, etc.

» Study the C/C++ examples.

Doan Nhat Quan Elementary Data Structures 2 /49
g /

Data refers to the fact that some existing information or
knowledge. Data is a set of values of qualitative or quantitative
variables.

Doan Nhat Quang Elementary Data Structures 3/ 49

Everything can be considered as data:
» name, age, address of a person
» number, series of number
> pixels or images in RGB color model or grayscale
» linear functions, polynomial functions, exponential functions
| 2

trees, graphs, maps, documents

Doan Nhat Quang Elementary Data Structures 4 / 49

DEY#)

Benchmark datasets

» UCI Dataset Repository: text, number
(https://archive.ics.uci.edu/ml/index.php);

» Amazon customer review: text, number
(https://jmcauley.ucsd.edu/data/amazon/);

» COCO16, MNIST: images
(https://cocodataset.org/#home);

» SNAP dataset collection: graph
(https://snap.stanford.edu/data/);

» and even more...

Doan Nhat Quang Elementary Data Structures 5/ 49

https://archive.ics.uci.edu/ml/index.php
https://jmcauley.ucsd.edu/data/amazon/
https://cocodataset.org/#home
https://snap.stanford.edu/data/

Data Structure

Data Structure

Primitive Non-primitive
| Integer —
Linear Non-linear

| chamcter —
\ Float — :

— Array Tree
| sting —

3 Queue Graph
‘ Double 1

I — Stack
F— Linked list

Doan Nhat Quang Elementary Data Structures 6 / 49

Data Structure

Applications

» List of items in the cart when you visit an online shop
» List of possible actions (undo/redo) in a word editor

> Bitmap (array 2D) to store image pixels
>

Graph to represent a group of persons and their relationship
(Graph Theory, Graph Mining)

» Tree to arrange and index data like web pages, images, etc.

Doan Nhat Quang Elementary Data Structures 7/ 49

Variables

Being used to store data, variables are simply names used to refer
to some location in memory, a location that we can use to write,
retrieve, and manipulate throughout the program.

Doan Nhat Quang Elementary Data Structures 8 / 49

Variables

Being used to store data, variables are simply names used to refer
to some location in memory, a location that we can use to write,
retrieve, and manipulate throughout the program.

Variable declaration

Variable declaration shows a specific type, which determines the
size used in the memory; the range of values that can be stored
within that memory; and the set of operations that can be applied
to the variable.

Doan Nhat Quang Elementary Data Structures 8/ 49

Variable name is an identifier for that variable call-by-name;
reference-by-name. The name can be composed of letters, digits,
and the underscore character. Upper and lowercase letters are
distinct.

<Type> <Variable >;
float F;

int id;

char xaddress;

~No ok~ o N

Doan Nhat Quang Elementary Data Structures 9 / 49

Variables

A variable MUST be initialized with a value before it is used.

1 int student_number=1254;

2 double scholarship=1132.50;
3 unsigned char gender=1;

4 string *home_address="Hanoi" ;
5 char <class_type="A’

A

Doan Nhat Quang Elementary Data Structures

10 / 49

Integer Types

N

There are a few ways to declare an integer:

char short int unsigned short int
signed char int unsigned int
unsigned char long int unsigned long int
Type Size Description

char 8 bits an integer type [—127;127]

(signed) int 32 bits the most natural size of integer for a
computer [—231 —1;231 4 1]

unsigned 32 bits non-negative integer number
short 16 bits a half of normal integer size
long 64 bits a double of normal integer size

Doan Nhat Quang Elementary Data Structures 11 / 49

Real Types

Represent real values, such as 3.14 or 0.01, with different levels of
precision, depending on which of the three floating-point types is

|

used.
Type Size Description
float 32 bits a single-precision floating point value
double 64 bits a double-precision floating point value
long double > 64 bits often more precise than double preci-

sion

Doan Nhat Quang

Elementary Data Structures

12 / 49

Character Type

Besides the use as an integer, char also can be declared for a
character. The value is determined at the character code in the

ASCII table.
1 |char ch = 65; // an integer
char ch = 'A"; // a character

Doan Nhat Quang Elementary Data Structures 13 / 49

1 int a, b; float ¢c; <char d = "A";

2 b = 1;

3 a=b+ 4.5;

4 c=a/ 4

5 d =c¢c + d;

6 printf("%d,-%d,-%f,-%d", a, b, c, d);
1 int a, b; float c¢; <char d = 'A’";

2 b = 1;

3 a=b+ 4.5;

4 c=a/ 4.0;

5 d=c + d;

6 printf("%d,-%d,-%f,-%c", a, b, c, d);

Doan Nhat Quang Elementary Data Structures 14 / 49

Pointers

A W DN R

Definition

A pointer is a variable whose value is the address of another
variable, i.e., the direct address of the memory location. Like any
variable or constant, a pointer must be declared before its use to
store any variable address.

int count;

int xcountPtr = &count;

int *undecided = NULL;

int &countAlias = count; // In G+

Doan Nhat Quang Elementary Data Structures

15 / 49

Pointers

Definition

Reference of a pointer must be initialized when declared. Pointer
could be initialized with NULL.

» & or ampersand indicate a reference of a variable.

> * allows getting the value of the variables being pointed by
pointers.

.

Doan Nhat Quang Elementary Data Structures 16 / 49

References

Creating references
» Consider a variable name as a label attached to the variable’'s
location in memory.
> A reference is a second label attached to that memory

location.

We can declare reference variables for i as follows.
1 int i = 17;
2 int xr = &i;
Read the & in these declarations as reference: "r is an integer

reference initialized to i”.)

Doan Nhat Quang Elementary Data Structures 17 / 49

References

B~ o N

int i = 17;
int xr = &i;
int d=1i;
i = i+3;

What are the final values for r and d?

Doan Nhat Quang

Elementary Data Structures

18 /

49

References vs Pointers

References are often confused with pointers, but
» Compilers generate a reference to each variable (after variable
declaration).
» There are no NULL references. A reference is connected to a
legitimate piece of memory.

» Once a reference is initialized to an object; it cannot be
changed to refer to another object. Pointers can be pointed
to another object at any time.

» A reference must be initialized when it is created. Pointers
can be initialized at any time.

Doan Nhat Quang Elementary Data Structures 19 / 49

Computer program

A computer program is a collection of instructions that performs
a specific task when executed by a computer. A program always
consists of a main including many functions and procedures
(Functional programming).

Main
Procedure ‘ Procedure Function
Function Function

Doan Nhat Quang Elementary Data Structures 20 / 49

A named section of a computer program, a block of code, that
performs a specific task. It can be called and reused multiple times.

Doan Nhat Quang Elementary Data Structures 21 / 49

Function

A named section of a computer program, a block of code, that
performs a specific task. It can be called and reused multiple times.)

1 int sum(int n){

2 int s = 0;

3 for (int i = 1;i<=n;i++)
4 S 4= i;

5 return s;

6 }

Doan Nhat Quang Elementary Data Structures 21 / 49

A named section of a computer program, a block of code, that
performs a specific task. It can be called and reused multiple times.J

1 int sum(int n){

2 int s = 0;

3 for (int i = 1;i<=n;i++)
4 s 4= i;

5 return s;

6 }

Doan Nhat Quang Elementary Data Structures 21 / 49

A function can be called or used in other functions.

Doan Nhat Quang Elementary Data Structures 22 / 49

Function
A function can be called or used in other functions.

1 int doublesum(int n){

2 int sum2 = sum(n) + sum(n);

3 return sum2;

4}

5 int main(){

6 int n = 10;

7 int suml = sum(10);

8 int sum2 = doublesum (10%sum(n));
9 return O0;

10 }

Doan Nhat Quang Elementary Data Structures 22 / 49

Void means nothing to be used in C, C++

Doan Nhat Quang Elementary Data Structures 23 / 49

Void means nothing to be used in C, C++

int myFunction(void) {
return 10; // function parameters are absent

1

2

3

4 void myFunctlon(){

5 statement; // the return value is absent
6 }

Doan Nhat Quang Elementary Data Structures 23 / 49

Void means nothing to be used in C, C++ I

int myFunction(void) {
return 10; // function parameters are absent
}

void myFunction (){
statement; // the return value is absent
}

Doan Nhat Quang Elementary Data Structures 23 / 49

SO WWN -

Void functions can be called and used like normal functions.

Doan Nhat Quang Elementary Data Structures 24 / 49

Void

CO~NO O~ WN

=
N = O ©

Void functions can be called and used like normal functions.

void myPrint () {
printf (" Hello-World!");
return;
}
void myPrint2(int n){
printf (" Number-is-%d”, n);
}
int main(){
myPrint ();
myPrint2 (100);
return 0;
}
Doan Nhat Quang Elementary Data Structures

24 / 49

Global variable vs local variable

Global variable

A global variable is a variable that it is visible (hence accessible)
throughout the program. lts value can be changed anywhere in the
code.

Doan Nhat Quang Elementary Data Structures 25 / 49

Global variable vs local variable

Global variable

A global variable is a variable that it is visible (hence accessible)
throughout the program. lts value can be changed anywhere in the
code.

Local variable

A local variable is a variable that is either a variable declared
within the function or is an argument passed to a function. This
type of variable can only be used within a function; after the
execution, local variables are removed from the computer memory.

Doan Nhat Quang Elementary Data Structures 25 / 49

Global variable vs local variable

1 int main(){

2 int result = sum(10); // local
3}

4 int sum(int n){

5 int s =0; // local variable
6 for (int i = 1;i<=n;i++){

7 s += 1i;

8 }

9 return s;

10 }

variable

Doan Nhat Quang Elementary Data Structures

26 / 49

Global variable vs local variable

1 #include <stdio.h>
2 int add_numbers(void);
3 int valuel, value2, value3;

4 int add_numbers(void){
5 int result = valuel + value2 + value3;
6 return result;
7}
8 int main(){
9 int result;
10 valuel = 10; value2 = 20; value3 = 30;
11 result = add_numbers();
12 printf (" The-sum-of-%d-+-%d-+-%d-is -%d\n" ,
13 valuel, value2, value3, result);
14 return O0;
15 }
Doan Nhat Quang Elementary Data Structures

27 / 49

Arguments/Parameters

» Calling functions that call other functions;

» Called functions that are called by other functions.

Arguments

» Formal arguments (variables) are found inside called functions
along with their data type;

» Actual arguments (that can be specific values) are found
inside calling functions.

Doan Nhat Quang Elementary Data Structures 28 / 49

Pass By Value

4 Note

The variables in the formal parameter list are always local vari-
ables of a function

» With Pass By Value, function parameters receive copies of the
data sent in.

» The original variables passed into a function from another
function are not affected by the calling function .

Doan Nhat Quang Elementary Data Structures 29 / 49

Pass By Value

O~NO O W

e el el el el
DO WNHE O O

#include <iostream>

using namespace std;

void twicel(int x){
X = X%*2;

}

int twice2(int x){
return x%x2;
}

int main ()

int i = 10;

twicel(i);

printf(’ 'Returned value of the first function:
i = twice2(i);

printf(’ ' Returned value of the second function:

return O;

}
What is the result?

%d ",

%d ',

Doan Nhat Quang Elementary Data Structures

30 / 49

Pass By Value

O~NOOs WN

R el el
P WODNH OO

#include <iostream>
using namespace std;
int twice(int x, int y){

X = X%*2; LOCAL value of x will change
y = y*x2; LOCAL value of y will change
return x;

}

int main () {
int a = 10;
int b = 5;
b = twice(a,b);
printf(‘‘Values of a =%d, and b = %d "',
return 0;

}
What is the result?

Doan Nhat Quang Elementary Data Structures

31 / 49

Pass By Reference

» The parameters are still local to the function, but they are
reference variables.

» The variables passed into a function DO get changed by the
calling function.

1 void twice(int #x, int *xy){

2 xx = *x*2; // these WILL affect the original argumentp
3 *y = %y*2; // these WILL affect the original argumentp
4}

Doan Nhat Quang Elementary Data Structures 32/ 49

Pass By Reference

O~NO O WN -

= e
W N = O

#include <iostream >

using namespace std;

void twice(int *x, int xy){
XX = kX *2; these WILL affect the original argument
Xy = xyx2; / these WILL affect the original argumentp

o

}

int main () {
int a = 10;
int b =5;
twice(&a,&b);
printf(‘‘Values of a =%, and b =%d'', a, b);
return 0;

}
What is the result?

Doan Nhat Quang Elementary Data Structures 33/ 49

[y

Pass By Reference

(8)Note

When a function expects strict reference types in the parameter
list, a value (i.e., a variable or storage location) must be passed
in.

void twice(int *x, int xy){
*X = *X%x2;
Xy = ky*2;

}

int main(){
int a =6, b= 10;
twice(&a, &b);
twice (4, &b);
twice(&a, &b—5);

O OO ~NOOOTHS WN

Doan Nhat Quang Elementary Data Structures 34 / 49

Value vs. Reference

Pass By Value

» The local parameters are copies of the original arguments
passed in.

» Changes in the function to these variables do not affect
originals.

Pass By Reference

» The local parameters are references to the storage locations of
the original arguments passed in.

» Changes to these variables in the function will affect the
originals.

» No copy is made, so the overhead of copying (time, storage)
is saved.

Doan Nhat Quang Elementary Data Structures 35 / 49

Arrays

Definition
» An array is a predefined-size sequential collection of N
elements of the same type.
» The objects are called elements of the array, and are indexed
by their order in the sequence.

» The element indices are from 0 to N — 1.

<type> <name>[<number of elements >];
int age[100];

float series[50];

Note: this array initialization is called “static”; the size must be
defined during the variable declaration and cannot be extended.

Doan Nhat Quang Elementary Data Structures 36 / 49

To access an element in an array, an index is available for use such
as a[0], b[1], a[i], b[i + j] with i,j € N. A basic loop permits to
process every element in the array.

1 for (i =0; i <n; i++){
2 <processing the ith element of the array >;

3}

Doan Nhat Quang Elementary Data Structures 37 / 49

Multi-Dimensional Arrays

The simplest form of the multi-dimensional array is the
two-dimensional array (a table or a matrix). It can be extended to
more general multi-dimensional cases. It's preferable to avoid
arrays of dimensions more than 3.

<type> <name> [<nb>][<nb>]...;
int a[3][4][5];

double b[10][10];

char str[17][5];

A W DN R

Doan Nhat Quang Elementary Data Structures 38 / 49

Multi-Dimensional Arrays

The table indicates the structure of an two dimensional array with
an element denoted by a[i][j] where i is the i*" row and j is the jt
column.

Column 0 Column1 Column?2 Column 3
Row 0 a[0][0] al0][1] a[0][2] a[0][3]
Row 1| a[1][0] a[1][1] a[1][2] a[1][3]
Row 2 | a[2][0] a[2][1] a[2][2] a[2][3]

Multi-dimensional arrays may be initialized by specifying bracketed
values for each row.

1 int a[2][3]={{1,5.,8},{2,4,7}};
2 for (int i =0; i < 2; i++)

3 for (int j =0; i < 3; j++)
4 statement;

Doan Nhat Quang Elementary Data Structures 39 / 49

Arrays vs Pointers

» A variable declared as an array of some type acts as a pointer
to that type.

» A pointer can be indexed to access an array.

1 int a[l10], *intPtr;

2 intPtr = a; intPtr pointing to a[0]

3 x(intPtr+5) = 4; a[5]=4

4 intPtr = &a[7]; intPtr pointing to the 7th element
5 intPtr4++; intPtr pointing to the 8th element

Doan Nhat Quang Elementary Data Structures 40 / 49

Arrays vs Pointers

Pointers can also be assigned to reference “dynamically” allocated
memory. The malloc() and calloc() functions are often used to
do this.

int xintPtr;

int size;

scanf("%d" , &size);

intPtr = (int *)malloc(sizeof(int)*(size+10));
*(intPtr + 3) = 5;

intPtr[3] = 5;

free(intPtr);

~NOoO oW N

Doan Nhat Quang Elementary Data Structures 41 / 49

Arrays vs Pointers

An array of pointers is an indexed set of variables, where the
variables are pointers.

1 int *Ptr[5];
char *Ptr = "Hello ,-World"” ;
3 char xPtr[4]={"Spring” ,”"Summer” ,” Autumn” ,”" Winter" };

N

Doan Nhat Quang Elementary Data Structures 42 / 49

Strings

String is a one-dimensional array of characters that is terminated
by a NULL character '\0'. Built-in functions for C-string is in
<string.h>.

.

char strl[5]; //maximal 4 characters

char str3[]="HANOI";

char *str4;

char xstrd4= (char x)calloc(6,sizeof(char));
char *str4="HANOI" ;

1A WN -

Doan Nhat Quang Elementary Data Structures

43 / 49

» One possible way to read in a string is by using scanf(). This
function finishes reading when it reaches a space, or the string
would get cut off.

» The function gets() can overcome this issue.

scanf(“'%s"' ", str);

gets(str)

~No ok~ N

Doan Nhat Quang Elementary Data Structures 44 / 49

Structure is user defined data type available in C programming,
which allows to combine one or more variables, possibly of different
types, grouped together under a single name for convenient
handling.

struct [structure tag]{
member definition ;
member definition ;

member definition ;
} [structure name];

Doan Nhat Quang Elementary Data Structures 45 / 49

1 struct Student{

2 int age;

3 char name[50];

4 unsigned char gender;
5 }

6 struct Student sl, s2;

1 struct StudentUSTH{

2 int age;

3 char name[50];

4 unsigned char gender;

5 }

6 typedef struct StudentUSTH STH;
7 STH s1, s2;

Doan Nhat Quang Elementary Data Structures 46 / 49

To access and process structure fields, dot ‘." operator can be used

1 sl.age = 20;
2 s2.name = ‘Nguyen Van An';
Or using this symbol '— >’ when it involves in pointers
1 sl—age = 20;
2 s2—>name = ‘Nguyen Van An’;

Doan Nhat Quang Elementary Data Structures 47 / 49

Structures and Pointers

Pointer can be used for a single structure variable, but it is mostly
used with array of structure variables.

1 +#include <stdio.h>

2 struct Book{

3 char name[1000];

4 int price;

5 1

6 int main(){

7 struct Book a;

8 struct Bookx ptr;

9 ptr = &a;

10 struct Book b[10];

11 struct Bookx p;

12 p = &b;

13 }

Doan Nhat Quang Elementary Data Structures 48 / 49

Enumeration

Enumerated types are types that are defined with finite number of
values, known as enumerators, as possible values. The key word for
an enumerated type is enum. Here is the syntax:

1 enum <type_name> {

2 enum_vall ,

3 enum_val2 ,

4 enum_val3,

5 s

1 enum Season {Spring, Fall, Summer, Winter};

2 Season sl, s2;

3 sl = Summer;

4 s2 = Fall;

5 if (sl == Summer)

6 printf (' 'Summer is comming’'');

Doan Nhat Quang Elementary Data Structures 49 / 49

