Abstract Data Types |l - Stacks & Queues

Doan Nhat Quang

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi
ICT department

Abstract Data Types |l - Stacks & Queues 1/ 56

Linked Lists

Linear Abstract Data Types:
@ Lists

e Definition: is a collection with a finite number of data objects
(same type) and has a finite size.

o List ADT: Array-based Lists, Linked Lists

o List Operations

@ Stacks

@ Queues

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 2 /56

Today Objectives

@ Introduce the basics of Stacks and Queues: declaration,
initialization, and use.

@ Learn different functions and operations with Stacks and
Queues: add, remove, search, etc.

@ Implement examples in C/C++.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 3/ 56

© Stacks

e Queues

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 4 /56

Stacks

Stacks

Stack of books Stack of coins

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 5/ 56

Stacks

Stacks

General Definition
A stack is a pile of objects, typically one that is neatly arranged.

Programming Definition

A stack is a container of objects inserted and removed according
to the First In Last Out (FILO) principle.

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 6 / 56

Stacks

Stacks

@ A linear data structure is used to store data in a particular order.

@ Storing and retrieving data are performed only on the top: Push
inserts an element; Pop removes the last element that was added.

@ Access of items in a stack is restricted; it follows First In Last Out
(FILO) order.

Top

o
()
w

IS

v

6 7 8 9

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 7 / 56

Stacks

Stacks

push 10 push 5 pop push 15 push7 pop

S A

15
| | [10] 10 10| 10 10

15
10

Push and pop operations follow FILO order.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 8 /56

Stacks

Stacks

Stack Application

@ Expression evaluation: calculate arithmetic expression.
@ Backtracking: This is a process when you need to access the
most recent data element in a series of elements
e Find your way through a maze.
e Find a path from one point in a graph (roadmap) to another
point.
o Play a game with moves to be made (checkers, chess, sudoku).
@ Undo/Redo-mechanism of text editors (Back/Forward
Navigation of web-browsers).

@ Call stack in recursive functions.

@ Data structures for Machine Learning algorithms.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 9 / 56

Stacks

Stacks

Stack Application

Arithmetic Expression:
@ infix - operation between operands
(3+5)*10
@ prefix - operation before operands
*+3510
@ postfix - operation after operands
35+ 10*

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 10 / 56

Stacks

Stacks

Stack Application

Arithmetic Expression: evaluating postfix

@ repeat
o find the first operation preceded by two operands
e evaluate and replace

o Example:
45%102 / +
=20 102/ +
= 205 +
= 25

.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 11 / 56

Stacks

Stacks

45%102/+
pop 5
push 4 popd push 2
push 5 push4 * 5 push 10
top 2
top 5 10
top 4 top 20 20
pop 2 pop5
pop 10 pop 20
push10/2 push20 +5 pop25

top 5
20 top 25 top

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 12 / 56

Stacks

Stacks

Stacks implementation may offer the possible operations:

init(): create an empty stack.
isEmpty(): check if the stack is empty.
push(): add a new item at the top of a stack.

pop(): remove the top item of a stack.

e 6 o6 o

top(): retrieve the top item of a stack.

Other operations can be possibly defined:
@ size(): return the size of a stack.
@ isFull(): check if the stack is full.
o display(): display the content of a stack.

@ etc.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 13 / 56

Stacks

Stacks

Stack Data Structure

There are several solutions to the stack implementation using
different declarations.

@ Static array-based stack: arrays can be simply used to
manipulate collections of items.

e Dynamic array-based stack: malloc() is capable of
representing a stack.

@ Linked stack: A very flexible mechanism for dynamic memory
management is provided by pointers.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 14 / 56

Stacks

Static Array-Based Stacks

The idea is to store a stack in a fixed-size static array for simple
implementation.

1 struct _Stack {

2 <DataType> data [CAPACITY];
3 int top;

4 };

5

typedef struct _Stack Stack;

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

15 / 56

Stacks

Static Array-Based Stacks

@ init(): this function allows for creating an empty stack.

1 void init(Stack xst) {
2 // st must get malloc() in main()
3 st—>top = —1;
4}
Capacity —
L

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

16 / 56

Stacks

Static Array-Based Stacks

@ init(): this alternative function allows for creating an empty
stack.

1 Stack * init(Stack #*st) {
2 st = (Stackx)malloc(sizeof(Stack));
3 st—>top = —1;
4 return st;
5}
Capacity s —
T

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

17 / 56

Stacks

Static Array-Based Stacks

@ isEmpty(): this action allows checking if a stack is empty.
1 int isEmpty(Stack st){
2 return (st.top<0);
3}
@ size(): this function returns the stack size.
1 int size(Stack st){
2 return st.top+1;
3}

Doan Nhat Quan Abstract Data Types |l - Stacks & Queues 18 / 56
g

Stacks

Static Array-Based Stacks

@ push(): this function allows to
add a new item into a stack.

1 void push(Stack xs, int val){

2 if (isFull(xs))

3 printf(’’Stack is full!l’");

4 else{

5 s—>top ++;

6 s—>data [s—top] = val; Top
[

8 }

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 19 / 56

Stacks

Static Array-Based Stacks

@ pop(): this function allows to
remove the top item from a
stack,

1 void pop(Stack xs){

2 if (isEmpty(*s))

3 printf(‘‘Stack empty!’'");
4 else{

5 s—>top —;

6 }

7}

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 20 / 56

Stacks

Dynamic Array-Based Stacks

The idea is to perform the stack implementation with a dynamic
array.

1 struct _Stack {

2 int top;

3 int capacity

4 int xdata;

5 }

6 typedef struct _Stack Stack;

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

21 / 56

Stacks

Dynamic Array-Based Stacks

@ init(): this function allows to create an empty stack.

void init (Stack *s, int N) {

s—>top = O0;
s—>capacity = N;
s—>array = (int *)malloc(s—>capacity);

[o) NG, BN SN OV ST

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 22 / 56

Stacks

Array-Based Stacks

Array-based stack implementation:

@ Simple to understand and implement.

@ Stack is asserted at the top without changing other elements.

@ Stack size has to be manipulated.

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 23 / 56

Stacks

Stack Implementation with Linked Lists

Definition

In this implementation, each item is placed together with the link

to the next item, resulting in a simple component called a node:
@ A data part stores an element value of the stack.

@ A next part contains a link (or pointer) that indicates the
node's location containing the next element.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

YW

Stacks

Stack Implementation with Linked Lists

Implementing a stack as a linked list:

struct _Node{
int data;
struct _Node *next;
Je
typedef struct _Node Node;
struct _Stack{
int size;
Node =xpTop;
Je

typedef struct _Stack Stack;

O WO ~NOOTPAWN R

[y

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 25 / 56

Stacks

Doan Nhat Quang

pTop

Stacks

> NULL

Abstract Data Types |l - Stacks & Queues

Stacks

Stacks Implementation with Linked Lists

Several basic operations are re-written to adapt to the new use of
stack implementation.

void init(Stack *s){
s—>size = 0;
s—>pTop = NULL;

}

int isEmpty(Stack st){
return (st.size);
}

O~NOOs WN

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 27 / 56

Stacks

Stack Implementation with Linked Lists

Push operation is adapted to the new declaration:
1 int push(int newData, Stack xst){
2 Node #p;
3 p=(Node *)malloc(sizeof(Node));
4 if (p = NULL)
5 return O;
6 p—>data = newData;
7
8 p—next = st—>pTop—>next;
9 st—>pTop = p;
10 st—>size+4+;
11 return 1;
12}

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 28 / 56

Stacks

Stack Implementation with Linked Lists

Pop operation is adapted to the new declaration:

1 int pop(stack =*st){

2 Node x*p;

3 if (isEmpty(*xst))

4 return 0;

5 p = st—=pTop;

6 st—>pTop = st—>pTop—>next;
7 st—>size ——;

8 free(p);

9 return 1;

10 }

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 29 / 56

Stacks

Complexity

Comparisons of complexity for different stack implementations

push() pop() top()
Array-based Stacks O(1) 0O(1) 0(1)
Stacks with Linked List ~ O(1) O(1) O(1)

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 30 / 56

Stacks

Stack Implementation with Linked Lists

@ Stack implementation with linked lists is flexible to the size
and memory.

.

@ If the top element is not used in the implementation, we have
to traverse all the elements in the stack to find the top.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

31 / 56

Stacks
Queues

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 32 / 56

Queues

General Definition

A queue is a line or sequence of people or vehicles awaiting their
turn to be attended to or to proceed.

.

Programming Definition

A queue is a container of objects (a linear collection) that are
inserted and removed according to the first-in-first-out (FIFO)
principle.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 33/ 56

Queues

ADT Queues

@ A special data structure of lists used to store data in a
particular order.

@ Basic operations are done in both ends: insert at one end
(back/rear) and remove at the other end (front/head).

@ Access of items in a Queue is restricted; it follows the First In
First Out (FIFO) order.

<

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 34 / 56

Queues

Queue Application

Typical uses of queues are in simulations and operating systems.

@ Operating systems often maintain a queue of processes ready
to execute or to wait for a particular event to occur.

@ Anything that involves “waiting in line": printing on the
computer, seating customers at a restaurant, etc.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 35 / 56

Queues

Queues are an abstract data structure, and its implementation may
offer the possible operations:

@ init(): initialize an empty queue.
e isEmpty(): check if the queue is empty.
@ enqueue(): add a new item at the back of the queue.

@ dequeue(): remove the front item of the queue.

Other operations can be possibly defined:
@ length(): return the size of a queue.
o front(): retrieve the front item of the queue.
o isFull(): check if the queue is full.
o display(): display the content of a queue.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

36 / 56

Queues

ADT Queues

There are several solutions to queue implementation using different
declarations.

@ Static array-based queue: arrays can be simply used to
manipulate collections of items.

e Dynamic array-based queue: malloc() is capable of
representing a queue.

@ Linked queue: A very flexible mechanism for dynamic memory
management is provided by pointers.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 37 / 56

Queues

Static Array-Based Queues

The idea is to store a queue in a fixed-size static array for simple
implementation.

struct _Queue {
int data[CAPACITY];
int front, back;

s

typedef struct _Queue Queue;

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

38 / 56

Queues

Static Array-Based Queues

e init(): this function allows to create an empty queue.
1 void init(Queue xq){
2
3 g—front = 0;
4 q—>back = 0;
5 }
W
@ isEmpty(): this operation verifies that a queue is empty.
1 int isEmpty(Queue xq){
2 return (q—>back ==0);
3}

Doan Nhat Quan Abstract Data Types |l - Stacks & Queues 39 / 56
g

Queues

Static Array-Based Queues

o length(): this operation returns the queue size.

1 int length(Queue xq){

2 int | = g—>back—g—>front;
3 return |;

4}

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 40 / 56

Queues

Static Array-Based Queues

Due to the FIFO order, new items are inserted at the back of the
queue. The function enqueue() allows to add a new item into a
queue.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 41 / 56

Queues

Static Array-Based Queues

There are three cases to be proceeded for enqueue(): the queue is
full, empty, and has at least one item.

1 int enqueue(Queue *q, <DataType> newData){
2 if (length(q) = CAPACITY){
3 printf(” Queue-is-full!l”);
4 return O;

5 }

6 if (isEmpty(a)){

7 g—>val [0] = newData;

8 } else {

9 int idx = gq—back;

10 g—>val [idx] = newData;
11 }

12 g—>back++;

13 return 1;

14)

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

42 / 56

Queues

Static Array-Based Queues

Due to the FIFO order, if we want to remove items from a queue,
this action will proceed at the front of the queue. The function
dequeue() asserts the deletion.

—[I-

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 43 / 56

Queues

Static Array-Based Queues

Two possible cases for dequeue() must be manipulated: when the
queue is empty or not empty.

1 int dequeue(Queue xq){

2 if (isEmpty(q))

3 return O;

4 else {

5 if (length(q) > 1){

6 for (int i = 1; i <length(q);i++)

7 g—=>val[i—1] = g—>val[i];

8 }

9 g—>back = g—back—1;

10 }

11 return 1;

12 1}

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 44 / 56

Queues

Dynamic Array-Based Queues

A dynamic array-based Queue improves the static array-based
implementation.

1 struct _Queuef{

2 int front , back;
3 int capacity;
4 int xval:

5 +s

6

typedef struct _Queue Queue;

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 45 / 56

Queues

Dynamic Array-Based Queues

@ init(): this function allows to create an empty queue.
1 void init(Queue xq, int N){
2
3 g—>back = 0;
4 g—front = 0;
5 g—>capacity = N;
6 g—>val = (int x)malloc(g—>capacity);
7}

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 46 / 56

Queues

Array-Based Queues

Array-based queue implementation:

@ Simple to understand and implement.

@ Enqueue is asserted at the back without shifting elements.

@ Only the first element is accessible.

@ All the elements have to be shifted (O(n) time for a queue
with n elements) after a dequeue.

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 47 / 56

Queues

Queue Implementation with Linked Lists

In this implementation, each item is placed together with the link
to the next item, resulting in a simple component called a node:

@ A data part stores an element value of the queue.

@ A next part contains a link (or pointer) that indicates the
node’s location containing the next element.

@ The front element points to NULL.

NULL | «— o e

pFront pBack

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 48 / 56

Queues

Queue Implementation with Linked Lists

Queue implementation using a linked list

1 typedef struct _Node {

2 int data;

3 struct _Node *xnext;

4 } Node;

5 typedef struct _Queue {

6 Node *pFront, xpBack;
7 int size;

8 }Queue;

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 49 / 56

Queues

Queue Implementation with Linked Lists

Several basic operations are re-written to adapt to the new use of
queue implementation.

1 void init(Queue xq){

2

3 g—size = 0;

4 g—pFront = q—pBack = NULL;
5 }

6 int isEmpty(Queue q){

7 return (q—>qFront = NULL);

8 }

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 50 / 56

Queues

Queue Implementation with Linked Lists

Enqueue operation:
@ New items are enqueued at the back of the queue.

@ The back node points to new items.

!
X [Tonow

pFront pBack

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 51 / 56

Queues

Queue Implementation with Linked Lists

1 void enqueue (Queue xq, <DataType> val){
2 Node #p = (Node *)malloc(sizeof(Node));
3 p—>name = val;
4 p—>next = NULL;
5 if (g—>pFront = NULL)
6 g—pFront = q—pBack = p;
7 else{
8 p—next = g—>pBack;
9 g—pBack = p;
10 }
11 q—>size++;
12}
Doan Nhat Quang Abstract Data Types |l - Stacks & Queues

52 / 56

Queues

Queue Implementation with Linked Lists

Dequeue operation:
@ The list should have at least one element.
@ The front node points to the node that points to the first one.
@ The pointer of this node points to NULL.

! |
NULL %.—>< «—1 «—1
X

pFront pBack

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 53 / 56

Queues

Queue Implementation with Linked Lists

1 void dequeue(Queue xq){

2 if (isEmpty(xq))

3 return 0;

4 else {

5 if (g—=>size =— 1){

6 g—>pFront = g—>pBack = NULL;
7 q—>size ——;

8 }

9 else{

10 Node *xp = gq—>pBack;

11 while (p—>next !=q—>pFront)
12 p = p—>next;

13 g—pFront = p;

14 g—>pFront—next = NULL;

15 qg—>size ——;

16 }

17 }

18 return 1;

19

Doan Nhat Quang Abstract Data Types |l - Stacks & Queues 54 / 56

Queues
Complexity

Comparisons of complexity for different queue implementations

enqueue() dequeue() front()
Array-based Queues 0(1) O(n) 0O(1)
Queues wLL (with pFront, pBack) 0(1) O(n) 0(1)
Queues wLL (without pFront) 0(1) O(n) O(n)
Queues wDLL (with pFront, pBack) 0(1) 0(1) 0(1)

LL - Singly Linked List; DLL - Doubly Linked List

Doan Nhat Quan Abstract Data Types |l - Stacks & Queues 55 / 56
g

Queues

Queue Implementation with Linked Lists

@ Flexible to the size and memory.

@ Enqueue can be done without shifting elements.

@ Have to traverse all the way to find the second element for
the dequeue

.

Doan Nhat Quang Abstract Data Types Il - Stacks & Queues 56 / 56

	Stacks
	Queues

