Inheritance lymorphism

OOP in Python

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

OP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

R W S norphism ulation

[Jele]ele]e]

Review

Tran Giang Son, tran-giang.son@usth.edu.vn 2

Review
[o] Je]ele]e]e]

Questions!?!!!!

e What is a class? What is an object?
e What is the difference between an object and a class?
® Where do objects come from (how do you create one)?

e How many objects of a given class can you have at a given
time?

® Each data type in Java (and in many other languages) can
be classified as one of two kinds. What are they, and how
are they different?

LOr exam?!

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 3/ 34

Review
[e]e] lelele]e]

Questions!?!!!

e What is a primitive type? What is a reference type (or
object type)?

e What is a method?

® Can a class have more than one method with the same
name? If so, are there any restrictions?

e What is a parameter? What is a return value?

® Can parameters and return values be primitive types?
Reference types?

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

Review
[e]e]e] lele]e]

Questions!?!!!

e What is type matching or type conformance?

What is a constructor?

What is assignment? How is it different for reference types
versus primitive types?

What are accessor methods and mutator methods?

What is abstraction and why is it a good thing?

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

Review
0000800

Questions!?!!!

e What is inheritance?

What is an inheritance hierarchy?

What is a subclass? A superclass?

What are the advantages of using inheritance?

What is the difference between an is-a and a has-a
relationships?

P in Python Tran Giang Son, tran-giang.son@usth.edu.vn

Review
[e]e]e]ele] o]

Questions!?!!!

¢ What is polymorphism?

® What are overriding and overloading? Are they the same?
Give examples.

e What does the keyword super mean? When is it used?

o What does the keyword protected mean? When is it used,
and what does it do?

e What is meant by the static and dynamic types of a
variable?

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 7/ 34

Review
000000e

Questions!?!!!

e What is an abstract class? When are they useful? Give an
example.

e What is multiple inheritance? Why is it useful? Can it be
done in Java? Is there a substitute for it?

e What is an interface? Why are they useful?

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

Inheritance morphism \psulation

Object and Class

Tran Giang Son, tran-giang.son@usth.edu.vn 9/ 34

Object and C

O®000000000

Previously, on PW #1

® Functions
® Input functions:
® Input number of students in a class
® Input student information: id, name, DoB
® Input number of courses

® [nput course information: id, name

Select a course, input marks for student in this course
® Listing functions:

® [ist courses

® List students

® Show student marks for a given course

Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 34

Object and C

0O0@00000000

e Lists, dicts, tuples could be OOP’ed
® Student
® Course

® StudentMark
® Easier to manage

® Close to real-world management

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

Object and C
[e]e]e] Jelelelele]e]e)

Procedural Programming
e Variables and related
functions are separated
® Programs is divided into
functions

P in Python

Object-Oriented Programming

® Variables and related
functions are bound
together

® Programs are divided into

objects

Tran Giang Son, tran-giang.son@usth.edu.vn

Object and Class

[e]e]e]e] Jeleje]ele]e)

How

® Define a class
class <ClassName>
® Define a method
def <methodName>([args])
® Define a constructor
def __init__([args])
® Create an object from class
<obj> = <ClassName>([args])

® self: current object

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 34

Object and C

[e]e]e]e]e] Jeje]ele]e)

How

class Person:
def print(self):
print("Name:", self.name)
print("Age:", self.age)

def —init: (self-n,)
self.name = n

self.age = a

macron = Person("Emmanuel Macron")

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 14 / 34

Object and C

O00000@0000

How

® (Call an object’s method
<obj>.<methodName>([args])
® Accessing an object’s attribute

<obj>.<attr> = "values"

P in Python

Tran Giang Son, tran-giang.son@usth.edu.vn

15 / 34

Object and C

00000008000

How

® Object comparison: __1t__ method
® Compares current object with another instance

® Return True if less than? the other instance

def _1t__(self, other):
return self.age < other.age

2Hence its name is __1t__

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 16 / 34

Object and Class

00000000800

How

® Object’s string representation: __str__ method
® Defines how an object will be stringified
® Mostly when using with print ()

def str (self):
return f"My name is {self.name}. I am {self.age}."

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 17 / 34

Object and Class

00000000080

How: complete example clazz.py

#!/usr/bin/env python3
class Person:
def-— " inmiti=(self, n,—a):
self.name = n
self.age = a

def describe(self):
print("Name:", self.name)
print("Age:", self.age)

def __1t__(self, other):
return self.age < other.age

def __str__(self):
return f"My name is {self.name}. I am {self.age}."

macron = Person("Emmanuel Macron", 43)
macron.describe()
print (macron)

biden = Person("Joe Biden", 78)
print (f"Macron is younger: {macron < biden}")

OP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

Object and C

O000000000e

How: complete example

$./clazz.py

Name: Emmanuel Macron

Age: 43

My name is Emmanuel Macron. I am 43.
Macron is younger: True

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

norphism ulation

®000000

Inheritance

Tran Giang Son, tran-giang.son@usth.edu.vn

Inheritance

0O@00000

Defining Inheritance

® Define a child class with a superclass in parentheses

e All methods and attributes from superclass will be inherited
to subclass

class Person:
already defined before...

class President (Person):
def set_term(self, term):
print(f"Setting term to {term}")
self.term = term

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 21 / ¢

Inheritance
[e]e] lelele]e]

Defining Inheritance

® Using the newly defined class and method

print("Macron is now President")
macron = President ("Emmanuel Macron", 43)

macron.set_term(25) # from Prestident
macron.describe () # from Person
$./clazz.py

Macron is now President
Setting term to 25
Name: Emmanuel Macron
Age: 43

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 22 / 34

Inheritance
[e]e]e] Jele]e]

Checking inheritance

® Built-in functions isinstance() and issubclass()

® isinstance() returns True if the object is an instance of
the class or other classes derived from it

® jssubclass() is used to check for class inheritance.

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 34

Inheritance
000000

Checking inheritance

print(f"Macron is President: {isinstance(macron, President)}");
print (£f"Macron is Person: {isinstance(macron, Person)}");

print (f"President is Person: {issubclass(President, Person)}")
print (f"Person is President: {issubclass(Person, President)}")

$./clazz.py

Macron is President: True
Macron is Person: True

President is Person: True
Person is President: False

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 24 / 34

Inheritance
[e]e]e]e]e] Jo]

Multiple Inheritance

® Python supports multiple inheritance
e Simply by adding more base class into the parentheses

class Person:
already defined before...

class Employee:
def work(self):
print ("I should be paid...")

class President(Person, Employee):
already defined before. :,

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

Inheritance
000000e

Multiple Inheritance

print("Macron is now President")
macron = President ("Emmanuel Macron", 43)

macron.set_term(25) # from President
macron.describe () # from Person
macron.work () # from Employee
$./clazz.py

Setting term to 25
Name: Emmanuel Macron
Age: 43

I should be paid...

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

ulation

Polymorphism

Tran Giang Son, tran-giang.son@usth.edu.vn

Polymorphism

(o] 1o}

Method overrides

e A superclass’s method can be overridden, simply by deffing
the same method name in the subclass

e A superclass instance can be accessed using super () in the
subclass

class Person:
already defined before...

class President(Person, Employee):
something before
def describe(self):
super () .describe ()
print("Term:", self.term)

def work(self):

super() .work() # from Employee
Tran Giang Son, tran-giang.son@usth.edu.vn

Polymorphism
[e]e] J

Method overrides

e Using the overridden method

print("Macron is now President")
macron = President ("Emmanuel Macron", 43)

macron.set_term(25) # from President
macron.describe () # from Person
macron.work() # from President
$./clazz.py

Setting term to 25
Name: Emmanuel Macron
Age: 43

I am well paid!
President is well paid!

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

norphism

Encapsulation

Tran Giang Son, tran-giang.son@usth.edu.vn

Encapsulation

O®000

Private / Public access

® public by default
® No specified keyword

® Use underscore prefixes
® name: public

® name: protected

® name: private

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 31/ 34

Encapsul

00e00

Private / Public access

® Accessor methods / Mutator methods

® Getter / Setter

class Employee:
def __init__(self):
self. _salary = 0

def _get_salary(self):
return self.__salary

def set_salary(self, salary):
self.__salary = salary

def work(self):
if self.__salary ==
print ("I should be paid...")
else:
print("I am well paid!")

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 32 /34

Private / Public access

print ("Macron is now President")
macron = President ("Emmanuel Macron", 43)

macron.set_term(25) # from President
macron.describe () # from Person

macron.set_salary(1000) # from Employee
macron.work () # from Prestident

print(£"Macron salary is {macron._get_salary()}")
print(f"Macron salary is {macron.__salary}")

$./clazz.py
Macron is now President
Setting term to 25
Name: Emmanuel Macron
Age: 43
President is well paid!
Macron salary is 1000
Traceback (most recent call last):
File ".../clazz.py", line 59, in <module>
print(f"Macron's salary is {macron.__salary}")
AttributeError: 'President' object has no attribute '__salary'

OP in Python Tran Giang Son, tran-giang.son@usth.edu.vn

Encapsulation

[e]e]ele]]

Practical work 2: OOP’ed student mark management

e Copy your practical work 1 to 2.student.mark.oop.py

e Make it OOP’ed
® Same functions
® Proper attributes and methods
® Proper encapsulation
® Proper polymorphism
® c.g. .input(), .list() methods
°

Push your work to corresponding forked Github repository

OOP in Python Tran Giang Son, tran-giang.son@usth.edu.vn 34 / 34

	Review
	Object and Class
	Inheritance
	Polymorphism
	Encapsulation

