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Questions!?!!!!

e What is a class? What is an object?
e What is the difference between an object and a class?
® Where do objects come from (how do you create one)?

e How many objects of a given class can you have at a given
time?

® Each data type in Java (and in many other languages) can
be classified as one of two kinds. What are they, and how
are they different?

LOr exam?!
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Questions!?!!!

e What is a primitive type? What is a reference type (or
object type)?

e What is a method?

® Can a class have more than one method with the same
name? If so, are there any restrictions?

e What is a parameter? What is a return value?

® Can parameters and return values be primitive types?
Reference types?
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Questions!?!!!

e What is type matching or type conformance?

What is a constructor?

What is assignment? How is it different for reference types
versus primitive types?

What are accessor methods and mutator methods?

What is abstraction and why is it a good thing?
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Questions!?!!!

e What is inheritance?

What is an inheritance hierarchy?

What is a subclass? A superclass?

What are the advantages of using inheritance?

What is the difference between an is-a and a has-a
relationships?
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Questions!?!!!

¢ What is polymorphism?

® What are overriding and overloading? Are they the same?
Give examples.

e What does the keyword super mean? When is it used?

o What does the keyword protected mean? When is it used,
and what does it do?

e What is meant by the static and dynamic types of a
variable?
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Questions!?!!!

e What is an abstract class? When are they useful? Give an
example.

e What is multiple inheritance? Why is it useful? Can it be
done in Java? Is there a substitute for it?

e What is an interface? Why are they useful?
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Previously, on PW #1

® Functions
® Input functions:
® Input number of students in a class
® Input student information: id, name, DoB
® Input number of courses

® [nput course information: id, name

Select a course, input marks for student in this course
® Listing functions:

® [ist courses

® List students

® Show student marks for a given course
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e Lists, dicts, tuples could be OOP’ed
® Student
® Course

® StudentMark
® Easier to manage

® Close to real-world management
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Procedural Programming
e Variables and related
functions are separated
® Programs is divided into
functions

P in Python

Object-Oriented Programming

® Variables and related
functions are bound
together

® Programs are divided into

objects
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How

® Define a class
class <ClassName>
® Define a method
def <methodName>([args])
® Define a constructor
def __init__([args])
® Create an object from class
<obj> = <ClassName>([args])

® self: current object
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How

class Person:
def print(self):
print("Name:", self.name)
print("Age:", self.age)

def —init: (self-n, )
self.name = n

self.age = a

macron = Person("Emmanuel Macron")
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How

® (Call an object’s method
<obj>.<methodName>([args])
® Accessing an object’s attribute

<obj>.<attr> = "values"

P in Python
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How

® Object comparison: __1t__ method
® Compares current object with another instance

® Return True if less than? the other instance

def _1t__(self, other):
return self.age < other.age

2Hence its name is __1t__
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How

® Object’s string representation: __str__ method
® Defines how an object will be stringified
® Mostly when using with print ()

def str (self):
return f"My name is {self.name}. I am {self.age}."
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How: complete example clazz.py

#!/usr/bin/env python3
class Person:
def-— " inmiti=(self, n,—a):
self.name = n
self.age = a

def describe(self):
print("Name:", self.name)
print("Age:", self.age)

def __1t__(self, other):
return self.age < other.age

def __str__(self):
return f"My name is {self.name}. I am {self.age}."

macron = Person("Emmanuel Macron", 43)
macron.describe()
print (macron)

biden = Person("Joe Biden", 78)
print (f"Macron is younger: {macron < biden}")

OP in Python Tran Giang Son, tran-giang.son@usth.edu.vn



Object and C

O000000000e

How: complete example

$ ./clazz.py

Name: Emmanuel Macron

Age: 43

My name is Emmanuel Macron. I am 43.
Macron is younger: True
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Defining Inheritance

® Define a child class with a superclass in parentheses

e All methods and attributes from superclass will be inherited
to subclass

class Person:
# already defined before...

class President (Person):
def set_term(self, term):
print(f"Setting term to {term}")
self.term = term
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Defining Inheritance

® Using the newly defined class and method

print("Macron is now President")
macron = President ("Emmanuel Macron", 43)

macron.set_term(25) # from Prestident
macron.describe () # from Person
$ ./clazz.py

Macron is now President
Setting term to 25
Name: Emmanuel Macron
Age: 43
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Checking inheritance

® Built-in functions isinstance() and issubclass()

® isinstance() returns True if the object is an instance of
the class or other classes derived from it

® jssubclass() is used to check for class inheritance.
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Checking inheritance

print(f"Macron is President: {isinstance(macron, President)}");
print (£f"Macron is Person: {isinstance(macron, Person)}");

print (f"President is Person: {issubclass(President, Person)}")
print (f"Person is President: {issubclass(Person, President)}")

$ ./clazz.py

Macron is President: True
Macron is Person: True

President is Person: True
Person is President: False
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Multiple Inheritance

® Python supports multiple inheritance
e Simply by adding more base class into the parentheses

class Person:
# already defined before...

class Employee:
def work(self):
print ("I should be paid...")

class President(Person, Employee):
# already defined before. :,
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Multiple Inheritance

print("Macron is now President")
macron = President ("Emmanuel Macron", 43)

macron.set_term(25) # from President
macron.describe () # from Person
macron.work () # from Employee
$ ./clazz.py

Setting term to 25
Name: Emmanuel Macron
Age: 43

I should be paid...
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Method overrides

e A superclass’s method can be overridden, simply by deffing
the same method name in the subclass

e A superclass instance can be accessed using super () in the
subclass

class Person:
# already defined before...

class President(Person, Employee):
# something before
def describe(self):
super () .describe ()
print("Term:", self.term)

def work(self):

super() .work() # from Employee
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Method overrides

e Using the overridden method

print("Macron is now President")
macron = President ("Emmanuel Macron", 43)

macron.set_term(25) # from President
macron.describe () # from Person
macron.work() # from President
$ ./clazz.py

Setting term to 25
Name: Emmanuel Macron
Age: 43

I am well paid!
President is well paid!
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Private / Public access

® public by default
® No specified keyword

® Use underscore prefixes
® name: public

® name: protected

® name: private
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Private / Public access

® Accessor methods / Mutator methods

® Getter / Setter

class Employee:
def __init__(self):
self. _salary = 0

def _get_salary(self):
return self.__salary

def set_salary(self, salary):
self.__salary = salary

def work(self):
if self.__salary ==
print ("I should be paid...")
else:
print("I am well paid!")
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print ("Macron is now President")
macron = President ("Emmanuel Macron", 43)

macron.set_term(25) # from President
macron.describe () # from Person

macron.set_salary(1000) # from Employee
macron.work () # from Prestident

print(£"Macron salary is {macron._get_salary()}")
print(f"Macron salary is {macron.__salary}")

$ ./clazz.py
Macron is now President
Setting term to 25
Name: Emmanuel Macron
Age: 43
President is well paid!
Macron salary is 1000
Traceback (most recent call last):
File ".../clazz.py", line 59, in <module>
print(f"Macron's salary is {macron.__salary}")
AttributeError: 'President' object has no attribute '__salary'
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Practical work 2: OOP’ed student mark management

e Copy your practical work 1 to 2.student.mark.oop.py

e Make it OOP’ed
® Same functions
® Proper attributes and methods
® Proper encapsulation
® Proper polymorphism
® c.g. .input(), .list() methods
°

Push your work to corresponding forked Github repository
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