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Reviews

• What is a file? What is a directory?

• What is a symlink?

• Shell commands:
• How to list files in a directory?

• How to show a file’s content?

• How to print all lines of a file containing a specific string?
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Files
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What

• Everything in UNIX is a file

• Named locations on disk to store information
• Text file

• Binary file
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Why

• RAM is volatile
• Variables are lost after process finishes

• File is persistent
• Data is saved
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How

1. Open a file

2. Read or write

3. Close the file
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How: Open a file

• Indicates that the program wants to work with a given file
• What file?

• What operation to work with

• open(fileName, mode)
• fileName: what file

• mode: what operations

• returns a File object representing an opened file
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How: Open a file

f = open("test.txt", "r")

Mode Meaning

r Reading (default)

w Writing. Creates or clears a file.

x Exclusive creation. Fails if file exists.

a Appending. Creates if file does not exist.

t Opens in text mode. (default)

b Opens in binary mode.

+ Opens a file for updating (rw)
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How: Read/write

• f.read(size) reads and returns size bytes
• size is optional

• Reads all file content by default

• Updates current file pointer after .read()

• Be careful for large files!

• f.seek(offset) sets current file pointer to a specific offset

• f.write() writes into file
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How: Read/write

>>> f = open("test.txt", "r+")
>>> f.read(19)
"The language's core"
>>> f.seek(0)
>>> f.read()
"The language's core philosophy is summarized in \

the document The Zen of Python: \n* Beautiful \
is better than ugly. \n* Explicit is better \
than implicit. \n* Simple is better than \
complex. \n* Complex is better than \
complicated. \n* Readability counts. \n"

>>> f.write("That's all\n")
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How: Read/write

• Text files
• .readline(): reads until a new line.

• There’s a \n at the end of file

• .readlines(): reads all lines

>>> f = open("test.txt", "r+")
>>> f.readline()
"The language's core philosophy is summarized in the document The Zen of Python: \n"
>>> f.readlines()
['* Beautiful is better than ugly.\n',

'* Explicit is better than implicit.\n',
'* Simple is better than complex.\n',
'* Complex is better than complicated.\n',
'* Readability counts.\n', "That's all\n"]
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How: Buffering
• Buffer: in-memory cache of file content

• Speeding up IO accesses1

• Reading/writing blocks is faster than individual bytes

No buffering vs Single buffering

1Even stdout. . .
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How: Buffering

• open(fileName, mode, buffering = -1)

• buffering is optional
• -1, same as io.DEFAULT_BUFFER_SIZE

• 0: disable buffering

• 1: line buffering for text files

• >1: fixed size buffer

• Flushing buffer: write buffer to disk, if any
• Manually f.flush()
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How: Close a file

• Close a file after using

• Clean up OS caches, buffers

• Without closing, there may be data loss with power outage

f.close()
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How: Close a file

• Automatically .close() using with

with open('test.txt', 'r+') as f:
data = f.read()

# other stuffs here, f is closed.
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How: Extras

• Exceptions

• Temporary files

• Compression

• Objects
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How: Extras

• Exceptions? Remind.

• Exception:
• Errors at runtime

• Python: try... except...

• For handling IO errors:

filename = input("Enter file name: ")
try:

f = open(filename, "r")
except IOError:

print(f"Error missing file {filename}")
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How: Extras
• Temporary files?

• Don’t care about name, location

• Just somewhere to store temp contents

• Automatically cleaned up after close()

• Module tempfile

import tempfile.TemporaryFile

# gimme a file, whenever it is
f = tempfile.TemporaryFile('w+t')
f.write("3.1415926...")
f.close()

# closed means deleted
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How: Extras

• Compression?
• What:

Use less storage to represent data

• Why:
• Smaller disk storage

• Easier for transmission over network

• Encryption with passwords

• Plenty of existing modules
• zlib, gzip, bz2, lzma, tarfile, zipfile

• Each module would have different advantages/disadvantages
and usage.
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How: Extras

Module Compression In-memory Extension Files Directory

zlib Yes Yes No No No

gzip Yes Yes .gz No No

bz2 Yes Yes .bz2 No No

lzma Yes Yes .xz No No

tarfile No No .tar Yes Yes

zipfile Yes Yes .zip Yes Yes
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How: Extras

• Serialize objects into byte array
• Save state to disk, optionally compressed (!)

• Load state later

• Transmit object to a remote machine
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How: Extras

• pickle module
• pickle.dump(obj, f): save object obj into

already-opened-for-binary-write file f

• obj = pickle.load(f): load object from
already-opened-for-binary-read file f
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How: Extras

• What can be pickled?
• None, True, and False

• Integers, floating point numbers, complex numbers

• Strings, bytes, bytearrays

• Tuples, lists, sets, and dictionaries containing only picklable
objects

• Can also pickled behaviors:
• Functions defined at the top level of a module

• Built-in functions defined at the top level of a module

• Classes that are defined at the top level of a module
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How: Extras

• pickle vs json

Feature pickle json

Compatibility Python-only Open

Format Binary Text

Readability Nah Yay

Data types Many Limited
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Directories
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What

• Hierachical structure
• A bunch of files

• A bunch of sub-directories

• Looks like a tree
• Path indicates a location inside a directory
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Why

• For organization of data

• Easier traversing and browsing
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How

• Listing: os.scandir(), os.walk() (recursive)

• Creating: os.mkdir(), os.mkdirs()

• Deleting: os.rmdir(), shutil.rmtree() (recursive)
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How

>>> import os
>>> e=os.scandir(".")
>>> [f for f in e]
[<DirEntry '0. pre-intro.md'>, \

<DirEntry '1. course intro.md'>, \
<DirEntry '2. introz.md'>, \
<DirEntry '3. language.md'>, \
<DirEntry '4. oop.md'>, \
<DirEntry '5. modules.md'>]

>>> os.mkdirs("figs/intro")
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Practice!
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Practical work 5: persistent info

• Copy your pw4 directory into pw5 directory

• Update your input functions
• Write student info to students.txt after finishing input

• Write course info to courses.txt after finishing input

• Write marks to marks.txt after finishing input
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Practical work 5: persistent info

• Before closing your program
• Select a compression method

• Compress all files aboves into students.dat

• Upon starting your program,
• Check if students.dat exists

• If yes, decompress and load data from it

• Push your work to corresponding forked Github repository
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Practical work 6: pickled management system

• Copy your pw5 directory into pw6 directory

• Upgrade the persistence feature of your system to use
pickle instead, still with compression

• Push your work to corresponding forked Github repository
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