
Review Processes Practice!

Multi Processing

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 1 / 39

Review Processes Practice!

Review

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 2 / 39

Review Processes Practice!

Review

• Process

• Scheduling

• IO Redirection

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 3 / 39

Review Processes Practice!

Process

• What is process?

• Process vs program?

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 4 / 39

Review Processes Practice!

Process
• Process is a program in execution state

(active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains

• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation

• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process
• Process is a program in execution state (active)

• Why process?
• Program is passive

• No execution → what’s running?

• A process execution state contains
• Processor state (context)

• File descriptors

• Memory allocation
• Process stack

• Data section

• Heap

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 39

Review Processes Practice!

Process States

new ready

waiting

running terminated
exitadmitted

interrupt

scheduled

event waitevent finish

• new: process has just been created

• ready: waiting to be assigned (scheduled) to a processor

• running: it’s executing instructions

• waiting: waiting for some events to occur

• terminated: finished execution

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 39

Review Processes Practice!

Process States

new ready

waiting

running terminated
exitadmitted

interrupt

scheduled

event waitevent finish

• new: process has just been created

• ready: waiting to be assigned (scheduled) to a processor

• running: it’s executing instructions

• waiting: waiting for some events to occur

• terminated: finished execution

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 39

Review Processes Practice!

Process Creation

• Start a new process == Create a new process
• Create new child process

• Can create child process → grand child process

• Dependent on OS, parent and child can share
• All resources: opened files, devices, etc. . .

• Some resources: opened files only

• No resource

• A fully loaded system will have a process tree

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 39

Review Processes Practice!

Process Creation
$ pstree -A
init-+-acpid

|-cron
|-daemon---mpt-statusd---sleep
|-dbus-daemon
|-dovecot-+-anvil
| |-config
| `-log
|-master-+-pickup
| |-qmgr
| `-tlsmgr
|-mysqld_safe---mysqld---23*[{mysqld}]
|-php5-fpm---2*[php5-fpm]
|-proftpd
|-screen---bash---python2---{python2}
|-sshd-+-sshd---sshd---bash---pstree
| `-sshd---sshd
|-udevd---2*[udevd]
`-znc---{znc}

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 8 / 39

Review Processes Practice!

Process Creation on Windows

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation

);

Source: MSDN

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 39

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx

Review Processes Practice!

Process Creation on Windows

• A simplified WinAPI function:

UINT WINAPI WinExec(
In LPCSTR lpCmdLine,
In UINT uCmdShow

);

• It’s deprecated.

Source: MSDN

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 39

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx

Review Processes Practice!

Process Creation on Windows

• A simplified WinAPI function:

UINT WINAPI WinExec(
In LPCSTR lpCmdLine,
In UINT uCmdShow

);

• It’s deprecated.

Source: MSDN

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 39

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx

Review Processes Practice!

Process Creation on UNIX/Linux

• New processes are not created from scratch

• Two steps
• fork()

• exec()

fork()

wait()

exec() exit()

parent

child

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 39

Review Processes Practice!

Process Creation on UNIX/Linux

• New processes are not created from scratch

• Two steps
• fork()

• exec()

fork()

wait()

exec() exit()

parent

child

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 39

Review Processes Practice!

Process Creation on UNIX/Linux

• fork()

• Perfectly «clone» current process to a new process

• Open files

• Register states

• Memory allocations

• Except process id

• Who’s who?
• Parent?

• Child?

pid_t fork(void);

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 39

Review Processes Practice!

Process Creation on UNIX/Linux

• fork()

• Perfectly «clone» current process to a new process
• Open files

• Register states

• Memory allocations

• Except process id

• Who’s who?
• Parent?

• Child?

pid_t fork(void);

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 39

Review Processes Practice!

Process Creation on UNIX/Linux

• fork()

• Perfectly «clone» current process to a new process
• Open files

• Register states

• Memory allocations

• Except process id

• Who’s who?
• Parent?

• Child?

pid_t fork(void);

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 39

Review Processes Practice!

Process Creation on UNIX/Linux
• Parent: fork() returns process id of child

• Child: fork() returns 0

• Example

#include <unistd.h>
#include <stdio.h>
int main() {

printf("Main before fork()\n");
int pid = fork();
if (pid == 0) printf("I am child after fork()\n");
else printf("I am parent after fork(), child is %d\n", pid);
return 0;

}

$./dofork
Main before fork()
I am parent after fork(), child is 2378
I am child after fork()

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 39

Review Processes Practice!

Process Creation on UNIX/Linux

• exec()

• Load an executable binary to replace current process image

• A family of functions.

• Ask man

int execl(...);
int execle(...);
int execlp(...);
int execv(...);
int execvp(const char *file, char *const argv[]);
int execvP(...);

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 14 / 39

Review Processes Practice!

Process Creation on UNIX/Linux

• exec() example

#include <stdio.h>
#include <unistd.h>
int main() {

printf("Going to launch ps -ef\n");
char *args[]= { "/bin/ps", "-ef" , NULL};
execvp("/bin/ps", args);
return 0;

}

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 15 / 39

Review Processes Practice!

Scheduling

• Multiple processes running at the same time

• Process scheduler is a part that decides which processes to
be executed at a certain time.

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 16 / 39

Review Processes Practice!

Scheduling

• Maximize CPU usage

• Responsiveness for User interface

• Provide computational power for heavy-workload processes

• «Multitasking»

• Different characteristics of processes
• CPU bound: spends more time on computation

• I/O bound: spends more time on I/O devices
(reading/writing disk, printing. . .)

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 17 / 39

Review Processes Practice!

Scheduling

• By the ability to pause running processes
• Preemption: OS forcely pauses running processes

• Non-preemption (also cooperation): processes willing to
pause itself

• By duration between each «switch»
• Short term scheduler: milliseconds (fast, responsive)

• Long term scheduler: seconds/minutes (batch jobs)

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 18 / 39

Review Processes Practice!

Scheduling

• By the ability to pause running processes
• Preemption: OS forcely pauses running processes

• Non-preemption (also cooperation): processes willing to
pause itself

• By duration between each «switch»
• Short term scheduler: milliseconds (fast, responsive)

• Long term scheduler: seconds/minutes (batch jobs)

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 18 / 39

Review Processes Practice!

Scheduling with Context Switch
Process A Operating System Process B

save state into PCB0

save state into PCB1

reload state from PCB1

reload state from PCB0

Executing

Interrupt

Interrupt

Executing

Executing
Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 19 / 39

Review Processes Practice!

Scheduling with Context Switch

• Switch between processes
• Save data of old process

• Load previously saved data of new process

• Context switch is overhead
• No work done for processes during context switch

• Time slice (time between each switch) is hardware-limited

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 20 / 39

Review Processes Practice!

Scheduling with Context Switch

Operating System Process A Process B Process C Process D

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 39

Review Processes Practice!

Scheduler

• Knowns
• List of processes

• Process states

• Accounting information

• Constraints
• Process priority (if any)

• Processes have scheduling priority

• Indicates the importance of each process

• Higher priority: more likely to be scheduled

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 22 / 39

Review Processes Practice!

Scheduler

• Knowns
• List of processes

• Process states

• Accounting information

• Constraints
• Process priority (if any)

• Processes have scheduling priority

• Indicates the importance of each process

• Higher priority: more likely to be scheduled

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 22 / 39

Review Processes Practice!

Scheduler

• Problems
• P1: What processes to run next?

• P2: How long should it run?

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 39

Review Processes Practice!

Scheduler

• Problems
• P1: What processes to run next?

• P2: How long should it run?

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 39

Review Processes Practice!

Scheduler

• Problem 1: What processes to run next?
• Job queue - set of all processes entering the system, stored

on disk

• Ready queue - set of all processes residing in main
memory, ready and waiting to execute

• Device queues - set of processes waiting for an I/O device
• Lists of PCBs

• Processes change state → they migrate among the various
queues

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 24 / 39

Review Processes Practice!

Scheduler

• Problem 2: How long should it run?
• First In First Served

• Earliest Deadline First

• Shortest Remaining Time

• Round Robin

• . . .

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 25 / 39

Review Processes Practice!

Scheduler

Algorithm Preempt? Priority? Note

First Come, First Served No No Depends on arrival time

Shortest-Job-First No Yes Low waiting time ω

Shortest-Remaining-Time-First Yes Yes Preemptive SJF, low ω

Round Robin Yes No Low response time ρ

Multilevel Queue Depends Depends Several subqueues, permanent

Multilevel Feedback Queue Depends Depends Several subqueues, migrate

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 39

Review Processes Practice!

IO Redirection

stdin (0) stdout (1)Process

stderr (2)

$$
4

#
3

@
2

!
1

~
`

%
5

^
6

&
7

*
8

(
9

_

-
+
=

)
0

{
[

}
]

|
\POIUYTREWQ

A S D F G H J K L

MNBVCXZ

:
;

“
‘

<
,

>
.

?
/

fn control option

alt

esc
F2F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

shift

tab

caps lock

⌘
command

⌘
command option

alt

shift

return

enter

delete

Default: input from keyboard and output to terminal

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 27 / 39

Review Processes Practice!

IO Redirection

filestdin (0) stdout (1)Process

stderr (2)

$$
4

#
3

@
2

!
1

~
`

%
5

^
6

&
7

*
8

(
9

_

-
+
=

)
0

{
[

}
]

|
\POIUYTREWQ

A S D F G H J K L

MNBVCXZ

:
;

“
‘

<
,

>
.

?
/

fn control option

alt

esc
F2F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

shift

tab

caps lock

⌘
command

⌘
command option

alt

shift

return

enter

delete

Input from keyboard and output to file

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 39

Review Processes Practice!

IO Redirection

file stdin (0) stdout (1)Process

stderr (2)

Input from file and output to terminal

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 39

Review Processes Practice!

IO Redirection

stdin (0) stdout (1)Process

stderr (2)

file file

Input from file and output to another file

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 30 / 39

Review Processes Practice!

IO Redirection

stdin (0) stdout (1)Process 1

stderr (2)

file stdin (0)

stderr (2)

stdout (1)Process 2 file

Input from file, pipe output of Process 1 to Process 2, output to
another file

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 31 / 39

Review Processes Practice!

Processes

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 32 / 39

Review Processes Practice!

Modules

• os

• subprocess

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 39

Review Processes Practice!

Task

• Create a process
• Run and wait for finish

• Run in background

• Run with timeout

• IO redirection
• Redirect input

• Redirect output

• Redirect with pipe

• Terminate

• Get return code

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 34 / 39

Review Processes Practice!

os module
• os module is deprecated in Python 3

• This is for references only.

Task How

Run and wait os.system("ps aux")

Run in background os.system("long_command.sh &")

Timeout N/A

Redirect input os.popen("bc", "w").write("1+2")

Redirect output print(os.popen("ps aux", "r").readlines())

Redirect with pipe os.pipe(), os.fork()

Terminate os.kill(pid, signal.SIGTERM)

Get return code return value of os.system()

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 35 / 39

Review Processes Practice!

subprocess module

Task How

Run and wait subprocess.run(["ps", "aux"])

Run in background subprocess.Popen("long_command.sh")

Timeout subprocess.run("long_command.sh", timeout = 10)

Redirect input subprocess.Popen("bc", stdin=subprocess.PIPE).communicate(b"3+4\n")

Redirect output subprocess.Popen(["ps", "aux"], stdout=subprocess.PIPE).communicate()

Redirect with pipe subprocess.Popen("bc", stdin=anotherProcess.stdout)

Terminate anotherProcess.terminate(), anotherProcess.kill()

Get return code subprocess.check_output(), catch CalledProcessError

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 36 / 39

Review Processes Practice!

Practice!

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 37 / 39

Review Processes Practice!

Practical work 7: Python shell

• Create a new python program, name it «7.shell.py»

• Make a shell
• User inputs command

• Shell executes the command, print output

• Support IO redirection
• input from file to process

• output from process to file

• e.g. input from one process being output of another

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 38 / 39

Review Processes Practice!

Practical work 7: Python shell

• Run it and test some commands
• ls -la

• ls -la > out.txt

• bc < input.txt

• ps aux | grep term

• Push your work to corresponding forked Github repository

Multi Processing Tran Giang Son, tran-giang.son@usth.edu.vn 39 / 39

	Review
	Processes
	Practice!

