
Review Multithreading Practice!

Multithreading

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 1 / 38

Review Multithreading Practice!

Review

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 2 / 38

Review Multithreading Practice!

Remind PCB

• Process Control Block

• Contains
• Process ID

• Process state (new/ready/running/waiting/terminated)

• Processor state (program counter, registers)
• File descriptors

• Scheduling information (next section)

• Accounting information (limits)

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 3 / 38

Review Multithreading Practice!

Remind PCB

• Process Control Block

• Contains
• Process ID

• Process state (new/ready/running/waiting/terminated)

• Processor state (program counter, registers)
• File descriptors

• Scheduling information (next section)

• Accounting information (limits)

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 3 / 38

Review Multithreading Practice!

Thread & Single-threaded process

• Thread
• a single flow of execution
• belongs to a process
• can be considered as lightweight

process
• Single-threaded process

• Default
• Only one thread per process

code data file descs

stack registers heap

thread

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 4 / 38

Review Multithreading Practice!

Single-threaded process

• Single stack
• Single text section (code)
• Single data section (global data)
• Single heap (dynamic allocation)

text

data

heap

stack

free memory

max

0

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 38

Review Multithreading Practice!

Multi-threaded process

• More than one thread per process

• Share the same PCB among threads
• Process state

• Memory allocation (heap, global data)

• File descriptors (files, sockets, etc.)

• Scheduling information

• Accounting information

• Different processor state (program counter, registers)

• Different stack

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 38

Review Multithreading Practice!

Multi-threaded process

code data file descs

stack

registers

heap

thread thread thread

stack

registers

stack

registers

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 38

Review Multithreading Practice!

Multi-threaded process

• Each thread has:
• Private stack
• Private stack pointer
• Private program counter
• Private register values
• Private scheduling policies

• Share:
• Common text section (code)
• Common data section (global

data)
• Common heap (dynamic

allocation)
• File descriptors (opened files)
• Signals. . .

text

data

heap

stack (thread 1)

free memory

max

0

stack (thread 2)

stack (thread 3)

SP1

SP2

SP3

PC1

PC2

PC3

Process memory space

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 8 / 38

Review Multithreading Practice!

Multi-threaded process vs Multi process

• Same goals

• Do several things at the same time

• Increase CPU utilization

• Increase responsiveness

• What is the principal difference between these two types of
process?
• Multi-process with fork(): «resource cloning»

• Multi-thread process: «resource sharing»

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 38

Review Multithreading Practice!

Multi-threaded process vs Multi process

• Same goals
• Do several things at the same time

• Increase CPU utilization

• Increase responsiveness

• What is the principal difference between these two types of
process?
• Multi-process with fork(): «resource cloning»

• Multi-thread process: «resource sharing»

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 38

Review Multithreading Practice!

Multi-threaded process vs Multi process

• Same goals
• Do several things at the same time

• Increase CPU utilization

• Increase responsiveness

• What is the principal difference between these two types of
process?
• Multi-process with fork(): «resource cloning»

• Multi-thread process: «resource sharing»

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 38

Review Multithreading Practice!

Multi-threaded process vs Multi process

• Same goals
• Do several things at the same time

• Increase CPU utilization

• Increase responsiveness

• What is the principal difference between these two types of
process?
• Multi-process with fork(): «resource cloning»

• Multi-thread process: «resource sharing»

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 38

Review Multithreading Practice!

Multi-threaded process vs Multi process

• Same goals
• Do several things at the same time

• Increase CPU utilization

• Increase responsiveness

• What is the principal difference between these two types of
process?

• Multi-process with fork(): «resource cloning»

• Multi-thread process: «resource sharing»

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 38

Review Multithreading Practice!

Multi-threaded process vs Multi process

• Same goals
• Do several things at the same time

• Increase CPU utilization

• Increase responsiveness

• What is the principal difference between these two types of
process?
• Multi-process with fork(): «resource cloning»

• Multi-thread process: «resource sharing»

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 38

Review Multithreading Practice!

Multi-threaded process vs Multi process

• Same goals
• Do several things at the same time

• Increase CPU utilization

• Increase responsiveness

• What is the principal difference between these two types of
process?
• Multi-process with fork(): «resource cloning»

• Multi-thread process: «resource sharing»

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 38

Review Multithreading Practice!

Why?

• Responsiveness

• Performance

• Resource Sharing

• Scalability

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 38

Review Multithreading Practice!

Responsiveness

• Responsiveness

• Performance

• Resource Sharing

• Scalability

• Perform different tasks at the same time

• Several operations can block (e.g. network, disk I/O)

• UI needs responsiveness

→ one thread for UI, other threads for background tasks

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 38

Review Multithreading Practice!

Responsiveness

• Responsiveness

• Performance

• Resource Sharing

• Scalability

• Perform different tasks at the same time
• Several operations can block (e.g. network, disk I/O)

• UI needs responsiveness

→ one thread for UI, other threads for background tasks

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 38

Review Multithreading Practice!

Responsiveness

• Responsiveness

• Performance

• Resource Sharing

• Scalability

• Perform different tasks at the same time
• Several operations can block (e.g. network, disk I/O)

• UI needs responsiveness

→ one thread for UI, other threads for background tasks

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 38

Review Multithreading Practice!

Responsiveness

• Responsiveness

• Performance

• Resource Sharing

• Scalability

• Perform different tasks at the same time
• Several operations can block (e.g. network, disk I/O)

• UI needs responsiveness

→ one thread for UI, other threads for background tasks

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 38

Review Multithreading Practice!

Performance

• Responsiveness

• Performance

• Resource Sharing

• Scalability

• Creating (fork()) a new process is slower than a thread

• Terminating a process is also slower than a thread

• Switching between processes is slower than between threads

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 38

Review Multithreading Practice!

Resource Sharing

• Responsiveness

• Performance

• Resource Sharing

• Scalability

• Memory is always shared
• Heap

• Global data

• All file descriptors are also shared
• Open files

• TCP sockets

• UNIX sockets

• Devices

• No need to use shm*()

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 38

Review Multithreading Practice!

Scalability

• Responsiveness

• Performance

• Resource Sharing

• Scalability

• More CPU cores: simply increase number of threads

• Don’t create too many threads
• Overhead

• Synchronization

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 14 / 38

Review Multithreading Practice!

Why NOT multi-thread?

• Threads are evil
• Nondeterministic

• Synchronization

• Deadlocks

• Complication

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 15 / 38

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

Review Multithreading Practice!

Multi-process real world app

Apache HTTPD Prefork Model1

1Image courtesy of Toni Miu’s blog
Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 16 / 38

http://miutony.blogspot.com/2014/10/from-server-architecture-to-analyze.html

Review Multithreading Practice!

Multi-thread, multi-process, real world app

Apache HTTPD Worker Model2

2Image courtesy of Toni Miu’s blog
Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 17 / 38

http://miutony.blogspot.com/2014/10/from-server-architecture-to-analyze.html

Review Multithreading Practice!

Multi-thread, multi-process, real world app

Image courtesy of The Chromium ProjectMultithreading Tran Giang Son, tran-giang.son@usth.edu.vn 18 / 38

https://www.chromium.org/_/rsrc/1220197832277/developers/design-documents/multi-process-architecture/

Review Multithreading Practice!

Multithreading

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 19 / 38

Review Multithreading Practice!

Python threading

• Global Interpreter Lock
• Implemented in CPython

• Mutex

• Only 1 thread can control the Python intepreter

• Only one thread can be executed at any given time
• Bottleneck in Python CPU-bound code

• Not a problem in wrapper-to-native-code3

• Not a problem in IO-bound programs

3e.g. numpy uses native libraries, so no GIL problem
Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 20 / 38

Review Multithreading Practice!

Python threading

• Why GIL?
• Memory management

• Reference counting

• Garbage collector

• Simplification of thread-safety
• Only 1 mutex on the intepreter

• No multiple mutexes on each object

• No deadlock

• That’s not a bug

but a feature

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 38

Review Multithreading Practice!

Python threading

• Why GIL?
• Memory management

• Reference counting

• Garbage collector

• Simplification of thread-safety
• Only 1 mutex on the intepreter

• No multiple mutexes on each object

• No deadlock

• That’s not a bug but a feature

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 38

Review Multithreading Practice!

Python threading

• Removing GIL?
• Slower single-threaded performance

• 1 mutex per object reference. . .

• Potential deadlocks

• Less compatbility

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 22 / 38

Review Multithreading Practice!

How?

• 2 «How» questions:

• Q1: How does thread achieve concurrency?

• Q2: How to use thread?

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 38

Review Multithreading Practice!

How?

• 2 «How» questions:
• Q1: How does thread achieve concurrency?

• Q2: How to use thread?

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 38

Review Multithreading Practice!

How?

• 2 «How» questions:
• Q1: How does thread achieve concurrency?

• Q2: How to use thread?

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 38

Review Multithreading Practice!

How (Q1): Concurrency on Single Core

• Q1: How does thread achieve concurrency?

T1 T2 T3 T4 T5 T1 T2 T3 …single core

time

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 24 / 38

Review Multithreading Practice!

How (Q1): Concurrency on Multi Cores

• Q1: How does thread achieve concurrency?

T1 T5 T4 T3 T2 T1 T5 T4 …core 0

T2 T1 T5 T4 T3 T2 T1 T5 …core 1

T3 T2 T1 T5 T4 T3 T2 T1 …core 2

T4 T3 T2 T1 T5 T4 T3 T2 …core 3

time

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 25 / 38

Review Multithreading Practice!

How (Q2): Using thread

• Use the module

• Subclass Thread

• Create new instance

• Launch the new thread

• [optional] Wait for thread to finish

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 38

Review Multithreading Practice!

How (Q2): Using thread

• The threading module

import threading

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 27 / 38

1. Use the module
2. Subclass Thread
3. Create new instance
4. Launch the new thread
5. Wait for thread to finish

Review Multithreading Practice!

How (Q2): Using thread

• Define a subclass of threading.Thread

• Override run() method to run in background

• [optional] Implement __init__() method for passing
parameters

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 38

1. Use the module
2. Subclass Thread
3. Create new instance
4. Launch the new thread
5. Wait for thread to finish

Review Multithreading Practice!

How (Q2): Using thread

class BackgroundThread(threading.Thread):
def __init__(self, sleepTime):

threading.Thread.__init__(self)
self.__sleepTime = sleepTime

def run(self):
time.sleep(self.__sleepTime)
print(f"Finished sleeping {self.__sleepTime}s")

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 29 / 38

1. Use the module
2. Subclass Thread
3. Create new instance
4. Launch the new thread
5. Wait for thread to finish

Review Multithreading Practice!

How (Q2): Using thread

• Create new instance of the thread class

backgroundThread = BackgroundThread(10)

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 30 / 38

1. Use the module
2. Subclass Thread
3. Create new instance
4. Launch the new thread
5. Wait for thread to finish

Review Multithreading Practice!

How (Q2): Using thread

• Launch the new thread with.start()

• NOT .run()

backgroundThread.start() # note no args here

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 31 / 38

1. Use the module
2. Subclass Thread
3. Create new instance
4. Launch the new thread
5. Wait for thread to finish

Review Multithreading Practice!

How (Q2): Using thread

• [optional] Wait for thread to finish with .join()

backgroundThread.join()

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 32 / 38

1. Use the module
2. Subclass Thread
3. Create new instance
4. Launch the new thread
5. Wait for thread to finish

Review Multithreading Practice!

How (Q2): Using thread
import threading
import time

class BackgroundThread(threading.Thread):
def __init__(self, sleepTime):

threading.Thread.__init__(self)
self.__sleepTime = sleepTime

def run(self):
time.sleep(self.__sleepTime)
print(f"Finished sleeping {self.__sleepTime}s")

backgroundThread = BackgroundThread(10)
backgroundThread.start() # note no args here
backgroundThread.join()
print("Finished main thread")

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 33 / 38

Review Multithreading Practice!

How: Extras

• Simple threading without subclassing:

def threadFunction(sleepTime):
time.sleep(sleepTime)
print(f"Finished sleeping {sleepTime}s")

t = threading.Thread(target=threadFunction, args=(10,))
t.start()

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 34 / 38

Review Multithreading Practice!

How: Extras

• Synchronization between threads threading.Lock (also
called mutex)
• .acquire()

• .release()

• Automatic .acquire() and .release() using with
statement

• Be careful with race conditions while using Lock

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 35 / 38

Review Multithreading Practice!

How: Extras

lock = threading.Lock()
lock.acquire()
do something dangerous here
lock.release()

with lock:
do something dangerous here
print("Dangerous function")

lock is released automatically

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 36 / 38

Review Multithreading Practice!

Practice!

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 37 / 38

Review Multithreading Practice!

Practical work 8: multithreaded management system

• Copy your pw6 directory into pw8 directory

• Upgrade the persistence feature of your system to use
pickle in background thread, still with compression

• Push your work to corresponding forked Github repository

Multithreading Tran Giang Son, tran-giang.son@usth.edu.vn 38 / 38

	Review
	Multithreading
	Practice!

