Algebraic Structure
 Tutorial \# 7: Rings and Integral Domains

March 18, 2024

Exercise 1:

Show that the matrices of the size $n \times n$ is not an integral domain.

Exercise 2:

- Let R be a ring. Show that every nilpotent element of R is either zero or a zero-divisor.
An element $s \in R$ is nilpotent if $s^{n}=0$ for some positive $n \in \mathbb{N}$
- If R is an integral domain show that no nonzero element of R is nilpotent.

Exercise 3:

Let R be an integral domain. Prove that every subring of R with identity is an integral domain.

Exercise 4:

Let R be a commutative ring with identity element 1 . Suppose that a is an element of R for which $a^{2}=a$.

Show that if R is an integral domain, then either $\mathrm{a}=0$ or $\mathrm{a}=1$.

Exercise 5:

Let R, S be rings. Define addition and mulplication on the Cartesian product $R \times S$ as follows:

- $(\mathrm{r}, \mathrm{s})+\left(\mathrm{r}^{\prime}, \mathrm{s}^{\prime}\right)=\left(\mathrm{r}+\mathrm{r}^{\prime}, \mathrm{s}+\mathrm{s}^{\prime}\right)$
- $(\mathrm{r}, \mathrm{s}) \cdot\left(\mathrm{r}^{\prime}, \mathrm{s}^{\prime}\right)=\left(\mathrm{r} . \mathrm{r}^{\prime}, \mathrm{s} . \mathrm{s}^{\prime}\right)$

Show that

- $R \times S$ is a ring.
- If both R, S are commutative, show $R \times S$ is commutative.
- If both R, S have an identity, show $R \times S$ has an identity.

