COURSE SYLLABUS

1. INFORMATION

Subject	Course name in English: Electrical Circuits I					
Subject	Course name in Vietnamese: Lý thuyết Mạch điện I					
Instructor (c)	Dr. Nguyen Xuan Truong mail: <u>nguyen-xuan.truong@usth.edu.vn</u>					
Instructor (s)	Dr. Hoang Trung Kien	ien mail: <u>hoang-trung.kien@usth.edu.vn</u>				
Code		Credit points (ECTS) 04				
Required	Compulsory					
Proroquisitos	Mathematical analysis, Physic (electricity); General mathematics					
Trerequisites	(Differential Equations)					
	Lecture	30 hrs				
Time	Tutorial/Exercises	08 hrs				
Commitment	Practical/Lab-work	12 hrs				
	Total	50 hrs				

2. DESCRIPTION

	CO1	to develop an understanding of the elements of electric circuits and the				
		fundamental laws, general techniques for circuit analysis				
Objectives (CO)	CO2	help students to understand the transient and the steady-state response of				
		RC, RL and RLC circuits				
	CO3	to introduce elementary electronic circuits such as operational amplifiers				
	005	and their circuit models				
	Having successfully completed this course, students will be able to:					
	LO1	Interpret the basic circuit concepts, such as voltage, current, power,				
	LOI	energy, current range and its effect on person, etc.				
	LO2	Use Node and Mesh analyses techniques for the analysis of linear time				
Learning	LOZ	invariant circuits				
Outcomes	LO3	Analyse circuits by utilizing Thevenin's and Norton's theorems				
(LO)	LO4	Analyse circuits with Operational Amplifiers				
(20)	LO5	Interpret the operation of capacitors and inductors; and analyse both				
		transient and steady-state response of first order circuits				
	L06	Analyse second order circuits				
	LO7	Display a professional commitment to group work through cooperative				
		quizzes				
	This course is designed to introduce the definition, theory, and experiments in direct					
	current circuits. Students will learn the passive and active elements, fundamental					
Description	laws and theorems, circuit analysis techniques. An introduction to operational					
Let	amplifiers will be presented. The course performs what is normally referred to as a					
	transient and steady-state response of RC, RL and RLC circuits. A few examples					
	and homework problems in later chapters must be skipped.					
	[1] J. David Irwin, R. Mark Nelms, "Basic Engineering Circuit Analysis", 2008					
Textbook(s)	John Wiley & Sons Inc.					
~ /	[2] John O'Malley, "Schaum's Outline of Theory and Problems of Basic Circuit					
	Ana	Iysis ", Second edition, McGraw-Hill				

3. ASSESSMENT/EVALUATION

	Percentage	Туре
Attendance/Attitude	10%	
Practical	20%	Group report & presentation
Mid-term	20%	Written exam
Final exam	50%	Written exam

4. CONTENT

70	Contents		Hours		
Class			Exr.	Prc.	Ref./Resources
1	 PART 1: INTRODUCTION Basic concepts and quantities Charge, DC voltage, DC current, DC power, Basic characteristics of sinusoidal functions (AC current, cosine waveform, frequency, magnitude, AC power), phasor Electrical Safety: physiological effect of electric shock Circuit elements Active element: voltage and current source (independent, dependent) Passive element: resistor, inductor, capacitor Measuring devices: Ohmmeter, Ammeter, Voltmeter Basic laws in electric circuit – Resistive Circuit Ohm's law Two - Kirchhoff's laws Exercises 	3	0	3	 Lecture notes EC 1 (Nguyen Xuan Truong) <u>https://moodl</u> e.usth.edu.vn /course/view .php?id=333 #section-1 Textbooks
2	 PART 2: DC CIRCUIT ANALYSIS Introduction Nodal Analysis Loop Analysis MATLAB DC analysis Summary 	6	2	6	 Lecture notes EC 1 (Nguyen Xuan Truong) <u>https://moodl</u> <u>e.usth.edu.vn</u> /course/view .php?id=333 <u>#section-1</u> Textbooks
3	 PART 3: NETWORK THEOREMS The concepts of linearity and equivalence Superposition Thevenin's and Norton's theorems Maximum power transfer theorem Summary 	6	2	0	- Lecture notes EC 1 (Nguyen Xuan Truong) <u>https://moodl</u> <u>e.usth.edu.vn</u> /course/view

					_	<u>.php?id=333</u> <u>#section-1</u> Textbooks
4	 PART 4: OPERATIONAL AMPLIFIER Introduction (model the op-amp device; analysing a variety of circuits that employ op-amps) Op-Amp Operation Popular Op-Amp Circuit Circuits with Multiple Operational Amplifiers Summary 	6	2	0	-	Lecture notes EC 1 (Nguyen Xuan Truong) <u>https://moodl</u> <u>e.usth.edu.vn</u> /course/view .php?id=333 <u>#section-1</u> Textbooks
5	 PART 5: FIRST & SECOND-ORDER TRANSIENT CIRCUITS Introduction First-Order Circuit (RC and RL circuits) Second-Order Circuit (RLC circuit) Transient MATLAB analysis Summary 	9	2	3	-	Lecture notes EC 1 (Nguyen Xuan Truong) <u>https://moodl</u> <u>e.usth.edu.vn</u> /course/view .php?id=333 <u>#section-1</u> Textbooks

5. PRACTICAL WORK

Item	Content	Hours	Ref./Resources
1	APPLYING THE WHEATSTONE BRIDGE CIRCUIT	3	Wheatstone bridge – PHYWE https://www.phywe.com/experiments- sets/university- experiments/wheatstone- bridge_10188_11119/
2	AC TECHNOLOGY I	3	COM3LAB Course https://www.leybold- shop.com/com3lab-course-ac- technology-i-7001301.html
3	DC TECHNOLOGY I	3	COM3LAB Course https://www.leybold- shop.com/com3lab-course-dc- technology-i-7001101.html
4	DC TECHNOLOGY II	3	COM3LAB Course https://www.leybold- shop.com/com3lab-course-dc- technology-ii-7001201.html

Notes:

- Abbreviation: Lect. (lecture), Exr. (Exercise), Prc. (Practise).

- Exercises may include assignment, reports, student's presentation, homework, class exercises ... for each class sessions
- Practicals mostly refer to Lab- work or outside practice such as field trip.