
ADVANCED DATABASE

Relational database review & Advanced queries

NGUYEN Hoang Ha

(nguyen-hoang.ha@usth.edu.vn)

2

Course information

 Moodle page: https://moodle.usth.edu.vn/course/view.php?id=491

 Materials

 Assignment submissions

 Assessment

 Final test: 50%

 Rewards (+2, +1), Penalties (-2, - 1)

 Midterm test: 40%

 Attendance: 10%

https://moodle.usth.edu.vn/course/view.php?id=491

3

Contents & Schedule

4

Session 1 Agenda

 Relational Algebra Review

 Normal Forms

 Advanced Queries

RELATION DATABASE REVIEW

6

Relational Algebra Operations: π, σ, ρ

σ:select

ρCats(ID, Name, Description, Picture)(Categories)

π:project
Categories

Cats

ρ:rename

7

Relational Algebra Operations: ⋈

R2()R1()A B

1 2

3 4

5 6

C D

2 7

3 5

6 9

A B C D

1 2 2 7

5 6 6 7

Join: R1⋈B=CR2

8

Mathematics to Computer: RA to SQL

π ⋈cσ ρ

RA is the conceptual basis for DB systems
Math

Computer

9

Key of a relation

 A set attributes {A1, A2, .., An} is called a key of the
relation R if:

 1. Those attributes determine all other attributes.
→ It is impossible for 2 tuples of R to agree on all of {A1, A2, .., An}

 2. No subset of {A1, A2, .., An} determines all other attributes

 →A Key must be minimal

 Example

 AccademicResults (StudentID, SubjectID, grade, comment)

10

Different key types of a relation

 Super key

 Set of attributes (columns) to uniquely identify rows

 Key or candidate key

 Minimal super key

 Primary key

 One selected from candidate keys

 Alternate key

 Candidate key other than PK

 Foreign key

 Attribute refers to a PK of another relation

NORMAL FORMS

12

Why normalization?

 Data redundancy

 Update abnormally

13

Normal forms

Boyce-

Codd

No non-key

attributes

depends

others

All

determinants

must be

super keys

Atomic

values,

unique rows

Non-primary

key attributes

depend on all

component of

PK

14

1NF

 First Normal Form

 Attributes are single-valued, atomic

 Tuples are unique (Identified by PK)

 Case study: Garment management

 Is Products (item, colors, price, tax) in 1NF?

 No

15

1NF normalized

16

2NF

 Non-primary key attributes depend on all component of PK

 PK is a single attribute → guaranteed

 Our case:

 {item} → {price} , {price} → {tax}

17

2NF normalized

18

3NF

 No non-key attributes depends on others

 Example

 Products (item, price, tax)

 {Item} → {price} , {price} → {tax}

19

BCNF (3.5NF or 4NF)

 Condition: If X→Y then X is a super key

 Example: ProjectSites (PrjID, Site, Manager):

 Rules:

 Each manager can work at maximum 01 site

 A manager can manage multiple projects at the same time

 Functional dependencies:

 {PrjID, Site} → {LocalManager} R is in 3NF as {PrjID, Site} forms the PK

 {LocalManager} → {Site} R violates BCNF since LocalManager is not a super
key.

PrjID Site LocalManager

A Hanoi Daniel

B Hanoi Daniel

C Hanoi Green

A HCM city Kevin

B HCM city Kevin

B Danang Hauge

C Danang Brown

20

Normalize into BCNF

 ProjectSites (PrjID, Site, Manager) → not in BCNF

 Normalization into BCNF

 Managers (LocalManager, Site)

 ManagerProjects (LocalManager, ProjectID)

ADVANCED SQL QUERIES
SQL Server (developer edition)

22

 MSSQL Server Developer Edition

 MSSQL Management Studio

23

SQL data retrieval query structure

SELECT desired expressions, columns π
[FROM one or more tables]

[HAVING BY condition to restrict result]

[WHERE conditions about expected rows]

[GROUP BY rows with the same column values]

⋈c

σ

ρ

[ORDER BY column list]

24

Advanced SQL QUERIES

 CASE WHEN clause

 Subqueries

 Outer JOIN

 Self JOIN

 Challenges

25

CASE WHEN clause

 In AdventureWorks2012:

 Table Production.Product (ProductID, ProductNumber, ProductLine,

Name, …) where ProductLine= {‘R’, ‘M’, ‘T’, ‘S’, NULL}

 How to get a list of products with 3 columns ProductNumber,

Name, Category which is the meaning full allias of ProductLine

SELECT ProductNumber, Category =
CASE ProductLine

WHEN 'R' THEN 'Road'
WHEN 'M' THEN 'Mountain'
WHEN 'T' THEN 'Touring'
WHEN 'S' THEN 'Other sale items'
ELSE 'Not for sale'

END,
Name

FROM Production.Product
ORDER BY ProductNumber;

26

Another CASE WHEN example in SELECT

SELECT ProductNumber, Name, "Price Range" =
CASE

WHEN ListPrice = 0 THEN 'Mfg item - not for resale'
WHEN ListPrice < 50 THEN 'Under $50'
WHEN ListPrice >= 50 and ListPrice < 250 THEN 'Under $250'
WHEN ListPrice >= 250 and ListPrice < 1000 THEN 'Under $1000'
ELSE 'Over $1000'

END
FROM Production.Product
ORDER BY ProductNumber ;

27

Use CASE WHEN in ORDER BY

 List salesmen order by

countries. If salesmen

lives in the USA, we sort

by his region

SELECT BusinessEntityID, LastName, TerritoryName, CountryRegionName
FROM Sales.vSalesPerson
WHERE TerritoryName IS NOT NULL
ORDER BY CASE CountryRegionName WHEN 'United States' THEN TerritoryName

ELSE CountryRegionName END;

28

Use CASE WHEN in HAVING clause

 Use HAVING to get JobTitle whose MAX(payrate) of men >

$40 or MAX(payrate) of women > $42

SELECT JobTitle, MAX(ph1.Rate)AS MaximumRate
FROM HumanResources.Employee AS e

JOIN HumanResources.EmployeePayHistory AS ph1
ON e.BusinessEntityID = ph1.BusinessEntityID

GROUP BY JobTitle
HAVING (MAX(CASE WHEN Gender = 'M'

THEN ph1.Rate
ELSE NULL END) > 40.00

OR MAX(CASE WHEN Gender = 'F'
THEN ph1.Rate
ELSE NULL END) > 42.00)

ORDER BY MaximumRate DESC;

29

Subquery

30

Correlated Sub-Query

 The inner query is dependent on the outer query.

 It is used whenever a sub-query must return a different
result or set of results for each candidate row considered by
the main query.

31

Correlated Sub-query Example

32

Correlated Sub-query Example

33

Subqueries in FROM clauses

 Another use for subqueris is as relations in a FROM
clause:

 SELECT name
FROM movieExec,

(SELECT producerC#
FROM movies, starsIn
WHERE title = movieTitle

AND year = movieYear
AND starName = ‘Harrison Ford’

) as Prod
WHERE cert# = Prod.producerC#

34

OUTER JOIN

 List all Customers with theirs Orders, even those without

any order (In Northwind)

SELECT Customers.CustomerID, CompanyName, [Orders].*
FROM Customers LEFT OUTER JOIN [Orders] ON Customers.CustomerId = [Orders].CustomerId
WHERE OrderDate IS NULL

SELECT Customers.CustomerID, CompanyName, [Orders].*
FROM [Orders] RIGHT OUTER JOIN Customers ON Customers.CustomerId =
[Orders].CustomerId
WHERE OrderDate IS NULL

35

SELF JOIN

 List employees’ fullname and his/her boss name (in

Northwind DB).

SELECT E.FirstName + ' ' + E.LastName AS FullName, B.FirstName + ' ' + B.LastName Boss
FROM Employees E INNER JOIN Employees B ON E.ReportsTo = B.EmployeeID

36

Challenge 1

 In Northwind, list categories whose average prices are

greater than 30$, sort by those values

SELECT C.CategoryID, C.CategoryName, AVG(P.UnitPrice) AvgPrice
FROM Categories C INNER JOIN Products P ON C.CategoryID = P.CategoryID
GROUP BY C.CategoryID, C.CategoryName
HAVING AVG(P.UnitPrice) > 30
ORDER BY AVG(P.UnitPrice)

37

Challenge 2

 In Northwind, find the 3rd highest Unit Price of Products

SELECT P1.*
FROM Products P1 WHERE 3 = (SELECT COUNT(DISTINCT UnitPrice)

FROM Products P2
WHERE P1.UnitPrice <= P2.UnitPrice
)

