
ADVANCED DATABASE

View, stored procedure, function, and trigger

Dr. NGUYEN Hoang Ha

Email: nguyen-hoang.ha@usth.edu.vn

2

Agenda

 View

 SP

 Function

 Trigger

VIEW

4

View

 Definition: a virtual relation based on the result-set of a
SELECT statement

 Syntax:

CREATE VIEW view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

 Uses:

 Restrict data access

 Hide sensitive data

 Names of tables and columns

 Simplify data

 Reuse complex queries

5

Example

ALTER VIEW Partners WITH SCHEMABINDING AS

SELECT CustomerID PartnerID, CompanyName, 'C' AS [Type]

FROM dbo.Customers

UNION

SELECT CAST(SupplierID AS nvarchar) PartnerID, CompanyName,
'S' AS [Type]

FROM dbo.Suppliers

WITH SCHEMABINDING
Avoid removing

dependent objects

6

What happens when querying a view ?

SELECT PartnerID, CompanyName
FROM Partners
WHERE CompanyName LIKE 'A%'
ORDER BY CompanyName

SELECT PartnerID, CompanyName
FROM (

SELECT CustomerID PartnerID, CompanyName, 'C' AS [Type]
FROM Customers
UNION
SELECT CAST(SupplierID AS nvarchar) PartnerID, CompanyName, 'S' AS [Type]
FROM Suppliers) AS S

WHERE CompanyName LIKE 'A%'
ORDER BY CompanyName

ALTER VIEW Partners WITH SCHEMABINDING AS
SELECT CustomerID PartnerID, CompanyName, 'C' AS [Type]
FROM dbo.Customers
UNION
SELECT CAST(SupplierID AS nvarchar) PartnerID, CompanyName, 'S' AS [Type]
FROM dbo.Suppliers

7

Analyze query with Execution Plan

8 8

Types of Views

 Virtual views:

 Used in databases

 Computed only on-demand – slower at runtime

 Always up to date

 Materialized views

 Used in data warehouses

 Pre-computed offline – faster at runtime

 May have stale data

Performance tuning

9

Modify data of views

 Modify a view → modify base tables

 Restrictions:

 View contains joins between multiple tables → only INSERT and

UPDATE one table, can’t DELETE rows

 Views based on UNION, GROUP BY, DISTINCT → can’t modify

 Can’t UPDATE text and image columns

10

Modifiable views - INSERT

 Define view

 What happen?

 How to solve?

INSERT INTO CustomersParis (CompanyName, ContactName)
VALUES ('Techmaster', 'Peter Pan')

CREATE VIEW CustomersParis AS
SELECT CompanyName, ContactName, Phone, City
FROM Customers
WHERE City = 'Paris'

ALTER VIEW CustomersParis AS
SELECT CustomerID, CompanyName, ContactName, Phone, City
FROM Customers
WHERE City = 'Paris'
WITH CHECK OPTION
GO
INSERT INTO vwCustomersParis (CustomerID, CompanyName, ContactName, City)
VALUES ('TMVN', 'Techmaster', 'Peter Pan', 'Paris')

11

Modifiable views - UPDATE

 Join-based view – update only one side

CREATE VIEW vwCategoriesProducts AS
SELECT Categories.CategoryName, Products.ProductID,

Products.ProductName
FROM Products INNER JOIN Categories
ON Products.CategoryID = Categories.CategoryID

UPDATE vwCategoriesProducts
SET ProductName = 'Chay'
WHERE ProductID = 1

UPDATE vwCategoriesProducts
SET CategoryName = 'Drinks'
WHERE ProductID = 1

UPDATE vwCategoriesProducts
SET ProductName = 'Chay', CategoryName = 'Drinks'
WHERE ProductID = 1

12

Modifiable views - DELETE

 Define view

 Run query

→ Data in base table deleted

DELETE FROM CustomersParis
WHERE CustomerID = 'TMVN'

CREATE VIEW CustomersParis AS
SELECT CustomerID, CompanyName, ContactName, Phone,
City
FROM Customers
WHERE City = 'Paris'

13

Ensuring the data consistency of view

 Using WITH CHECK OPTION

 Try

CREATE VIEW CustomersParis AS
SELECT CompanyName, ContactName, Phone, City
FROM Customers
WHERE City = 'Paris‘
WITH CHECK OPTION

UPDATE CustomersParis
SET City = 'Lyon'

INSERT INTO CustomersParis (CompanyName, ContactName)
VALUES ('Techmaster', 'Peter Pan')

STORED PROCEDURE

15

Stored Procedure (SP)

 SP is a collection of T-SQL statements that SQL Server compiles

into a single execution plan.

 SP is stored in cache area of memory when it is first executed

so that it can be used repeatedly, not need recompiled

 Parameters:

 Input

 Output

16

SP Syntax

CREATE [OR ALTER] { PROC | PROCEDURE }
[schema_name.] procedure_name
[{ @parameter [type_schema_name.] data_type }

[VARYING] [= default] [OUT | OUTPUT | [READONLY]
]

[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS
{ [BEGIN] sql_statement [;] [...n] [END] }

[ENCRYPTION]

[RECOMPILE]

[EXECUTE AS username]

DROP PROC [schema_name.] procedure_name

17

Stored Procedure vs. SQL Statement

First Time

- Check syntax

- Compile

- Execute

- Return data

Second Time

- Check syntax

- Compile

- Execute

- Return data

First Time

- Be loaded

- Execute

- Return data

Second Time

- Execute

- Return data

SQL Statement Stored Procedure
Creating

- Check syntax

- Compile

18

Types of SP

 System stored procedure:

 Name begins with sp_

 Created in master database

 For application in any database

 Often used by sysadmins

 Local stored procedure:

 Defined in the local database

19

Executing a SP

 EXEC pr_GetTopProducts

 With parameters

 By Name:

EXEC pr_GetTopProducts

@StartID = 1, @EndID = 10

 By Position:

EXEC pr_GetTopProducts 1, 10

 Leveraging Default values

EXEC pr_GetTopProducts @EndID=10

 Place parameters with default values at the end of the list for
flexibility of use

20

Output parameters

 Used to send non-recordset information back to client

 Example: returning identity field

CREATE PROC InsertSuppliers
@CompanyName nvarchar(40), @returnID int OUTPUT
AS
INSERT INTO Suppliers(CompanyName) VALUES (@CompanyName)
SET @returnID = @@IDENTITY

GO

DECLARE @ID int
EXEC InsertSuppliers @CompanyName = 'NewTech', @returnID = @ID OUTPUT
SELECT @ID

21

Encrypting stored procedures

 When the stored procedures created, the text for
them is saved in the SysComments table.

 If the stored procedures are created with the
“WITH ENCRYPTION” then the text in
SysComments is not directly readable

 “WITH ENCRYPTION” is a common practice for
software vendors

22

Advantages of SP

 Security

 Code reuse, modular programming

 Performance

 Reduce traffic

23

Example: Reduced traffic

 Each time Client wants to execute the statement
“SELECT * FROM customer_details”, it must send this
statement to the Server.

 Of course, we see that, the length of that statement is
longer than the length of “Show_Customers”

24

Control of flow – SQL Programming

 Still somewhat limited compared to other languages

 WHILE

 IF ELSE

 BEGIN END block

 CASE

 WAITFOR

 CONTINUE/BREAK

25

Variables

 Declare a variable:

DECLARE @limit money

DECLARE @min_range int, @hi_range int

 Assign a value into a variable:

SET @min_range = 0, @hi_range = 100

SET @limit = $10

 Assign a value into a variable in SQL statement:

SELECT @price = price FROM titles

WHERE title_id = 'PC2091'

26

Control of Flow

BEGIN…END

IF…ELSE

CASE … WHEN

RETURN [n]

WHILE

PRINT

27

CASE … WHEN

CASE input_expression

WHEN when_expression THEN result_expression

[WHEN when_expression THEN result_expression…n]
[ELSE else_result_expression]

END

Example:

SELECT CASE payterms

WHEN 'Net 30' THEN 'Payable 30 days after invoice'

WHEN 'Net 60' THEN 'Payable 60 days after invoice'

WHEN 'On invoice'THEN 'Payable upon receipt of invoice'

ELSE 'None'

END as Payment_Terms FROM sales ORDER BY payterms

28

RETURN [n]

 Exits unconditionally of Trigger, Procedure or Function and

return a value (if any).

USE AdventureWorks2012;
GO
CREATE PROCEDURE checkstate @param varchar(11)
AS
IF (SELECT StateProvince FROM Person.vAdditionalContactInfo WHERE

ContactID = @param) = 'WA'
RETURN 1

ELSE
RETURN 2;

29

PRINT

 Display message in SQL Query Analyze (Console)

USE AdventureWorks2008R2;
GO
IF (SELECT SUM(i.Quantity)

FROM Production.ProductInventory i
JOIN Production.Product p
ON i.ProductID = p.ProductID
WHERE Name = 'Hex Nut 17'
) < 1100
PRINT N'There are less than 1100 units of Hex Nut 17 in stock.'

GO

30

TRY CATCH structure

CREATE PROCEDURE dbo.uspTryCatchTest
AS
BEGIN TRY

SELECT 1/0
END TRY
BEGIN CATCH

SELECT ERROR_NUMBER() AS ErrorNumber
,ERROR_SEVERITY() AS ErrorSeverity
,ERROR_STATE() AS ErrorState
,ERROR_PROCEDURE() AS ErrorProcedure
,ERROR_LINE() AS ErrorLine
,ERROR_MESSAGE() AS ErrorMessage;

END CATCH

31

WHILE

 Repeats a statement (or block) while a specific condition is true

WHILE Boolean_expression

SQL_statement | block_of_statements

[BREAK] SQL_statement | block_of_statements [CONTINUE]

 Example:

WHILE (SELECT AVG(royalty) FROM roysched) < 25

BEGIN

UPDATE roysched SET royalty = royalty * 1.05
IF (SELECT MAX(royalty)FROM roysched) > 27 BREAK

ELSE CONTINUE

END

SELECT MAX(royalty) AS "MAX royalty"

FROM roysched

32

Cursor

DECLARE myCursor CURSOR
FOR SELECT TOP(10) ContactName FROM Customers
DECLARE @RowNo int,@ContactName nvarchar(30)
SET @RowNo=1
OPEN myCursor
FETCH NEXT FROM myCursor INTO @ContactName
PRINT LEFT(CAST(@rowNo as varchar) + ' ',6)+' '+
@ContactName
SET @RowNo=@RowNo+1
SET @ContactName=''
WHILE @@FETCH_STATUS=0
BEGIN

FETCH NEXT FROM myCursor INTO @ContactName
PRINT + LEFT(CAST(@rowNo as varchar) + ' ',6)+' '+

@ContactName
SET @RowNo=@RowNo+1
SET @ContactName=''

END
CLOSE myCursor
DEALLOCATE myCursor

33

Basic Syntax
DECLARE demo_cursor CURSOR

READ_ONLY

FOR SELECT ProductID FROM Northwind..Products ORDER BY ProductID

DECLARE @ProductName nvarchar(50)

OPEN demo_cursor

FETCH NEXT FROM demo_cursor INTO @ProductName

WHILE (@@fetch_status <> -1)

BEGIN

IF (@@fetch_status <> -2)

BEGIN

DECLARE @message varchar(100)

SELECT @message = 'The product is: ' + @ProductName

PRINT @message

END

FETCH NEXT FROM demo_cursor INTO @ProductName

END

CLOSE demo_cursor

DEALLOCATE demo_cursor

GO

USER DEFINED FUNCTIONS

35

Basic Syntax

CREATE FUNCTION dbo.fn_total(@param1
datatype)

RETURNS datatype2

AS

BEGIN

DECLARE @localvar datatype2

--populate @localvar here

RETURN @localvar

END

36

Returned data types

 Scalar

 Returns a single value

 Evaluated for every row if used in select line

 Inline table values

 Returns a variable of type table

 Single select statement defines the table

 Multi-statement table valued

37

Example: Return a scalar value

CREATE FUNCTION FetchTotalOrders(@p_CustomerID nvarchar(10))
RETURNS INT
BEGIN
RETURN (SELECT COUNT(OrderID) FROM Orders
WHERE CustomerID = @p_CustomerID)
END

GO

SELECT dbo.FetchTotalOrders('ANTON')

38

Example: Return inline table value

CREATE FUNCTION CustomerPurchasedDetails (@p_CustomerID nvarchar(10))
RETURNS TABLE AS
RETURN (SELECT P.ProductName, P.UnitPrice
FROM Customers C INNER JOIN Orders O ON C.CustomerID = O.CustomerID
INNER JOIN [Order Details] OD ON O.OrderID = OD.OrderID
INNER JOIN Products P ON OD.ProductID = P.ProductID
WHERE C.CustomerID = @p_CustomerID)

GO

SELECT * FROM dbo.CustomerPurchasedDetails('ANTON')

39

Example: Multi-statement table valued

CREATE FUNCTION GetLastShipped(@CustomerID nchar(5))
RETURNS @CustomerOrder TABLE

(SaleOrderID INT, CustomerID nchar(5), OrderDate DATETIME,
OrderQty INT)

AS
BEGIN

DECLARE @MaxDate DATETIME
SELECT @MaxDate = MAX(OrderDate)
FROM Orders
WHERE CustomerID = @CustomerID
INSERT @CustomerOrder
SELECT a.OrderID, a.CustomerID, a.OrderDate, b.Quantity
FROM Orders a INNER JOIN [Order Details] b

ON a.OrderID = b.OrderID
WHERE a.OrderDate = @MaxDate

AND a.CustomerID = @CustomerID
RETURN

END
GO

SELECT * FROM dbo.GetLastShipped('ALFKI')

40

Uses of Functions

 Can greatly simplify the select line

 Modular programming

 Can improve reliability of data by reducing the number of

joins and encapsulating queries

 Reduce network traffic

 Faster execution

41

Function vs Stored Procedure

Function Stored procedure

Returned value Required Optional

Parameters Only input Input, output

Supported

statements

Only SELECT,

Not DML

SELECT, UPDATE, DELETE,

INSERT…

Transactions Not support Support

Temporary table Not support Support

Call Function or

SP?

Can’t call SP, only

Functions

Can call SPs and Functions

TRIGGERS

43

Trigger overview

 Definition: A trigger is a special SP executed automatically as

part of a data modification (INSERT, UPDATE, or DELETE)

 Associated with a table

 Invoked automatically

 Cannot be called explicitly

44

Syntax

CREATE TRIGGER trigger_name

ON <tablename>

<{FOR | AFTER}>

{[DELETE] [,] [INSERT] [,] [UPDATE]}

AS

SQL_Statement [...n]

45

Simplied Syntax

CREATE TRIGGER trg_one

ON tablename

FOR INSERT, UPDATE, DELETE

AS

BEGIN

SELECT * FROM Inserted

SELECT * FROM Deleted

END

Temporary table holding new

records

Temporary table holding old,

deleted, updated records

46

Uses of Triggers

 Maintenance of duplicate and derived data

 Ensure integrity

 Complex column constraints

 Cascading referential integrity

 Inter-database referential integrity

 Complex defaults

 Logging/Auditing

 Maintaining de-normalized data

47

Trigger example

Use Northwind
GO
CREATE TRIGGER Cust_Delete_Only1 ON Customers
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 1
BEGIN

RAISERROR('You are not allowed to delete more than one customer at a
time.', 16, 1)

ROLLBACK TRANSACTION
END

DELETE FROM Customers
WHERE CustomerID NOT IN (SELECT CustomerID FROM Orders)

Define a trigger preventing users from

updating more than 2 records at a time?

48

INSERT-Trigger example

USE Northwind GO
CREATE TRIGGER Order_Insert
ON [Order Details]
FOR INSERT
AS
UPDATE P SET UnitsInStock = (P.UnitsInStock – I.Quantity)
FROM Products AS P INNER JOIN Inserted AS I ON P.ProductID = I.ProductID

Order Details

OrderID

10522

10523

10524

ProductID

10

41

7

UnitPrice

31.00

9.65

30.00

Quantity

7

9

24

Discount

0.2

0.15

0.0

519.002 0.210523

inserted

10523 2 19.00 5 0.2

Products

ProductID UnitsInStock … …

1

2

3

4

15

10

65

20

2 5

INSERT [Order Details] VALUES
(10525, 2, 19.00, 5, 0.2)

49

UPDATE-Trigger example

CREATE TABLE PriceTracking
(ProductID int, Time DateTime, OldPrice money, NewPrice money)

GO

CREATE TRIGGER Products_Update
ON Products FOR UPDATE
AS
INSERT INTO PriceTracking (ProductID, Time, OldPrice, NewPrice)
SELECT I.ProductID, GETDATE(), D.UnitPrice, I.UnitPrice
FROM inserted AS I INNER JOIN Deleted AS D ON I.ProductID = D.ProductID AND
I.UnitPrice <> D.UnitPrice

UPDATE Products
SET UnitPrice = UnitPrice + 2

50

Enforcing integrity with Trigger

CREATE TRIGGER Products_Delete
ON Products FOR DELETE AS
IF (SELECT COUNT(*)

FROM [Order Details] OD
WHERE OD.ProductID = (SELECT ProductID FROM deleted)
) > 0

BEGIN
PRINT 'Violate Foreign key reference. Rollback!!!'
ROLLBACK TRAN

END

DELETE Products
WHERE ProductID = 11

51

Performance Considerations

 Triggers work quickly because the Inserted and

Deleted tables are in cache

 Execution time is determined by:

 Number of tables that are referenced

 Number of rows that are affected

 Actions contained in triggers implicitly are part of

a transaction

