
ADVANCED DATABASE

Transaction and Concurrency

Dr. NGUYEN Hoang Ha

Email: nguyen-hoang.ha@usth.edu.vn

2

Objectives

 Understand transaction

 Concepts

 Use isolation level to avoid concurrency problems

 Redo and undo

 Know how to schedule tasks of multi transactions

 Able to implement Transaction in SQL Server

3

Agenda

 Transaction concepts & properties

 Transaction concurrency problems

 Isolation levels

 Lock

 Log and recovery

 Serializability checking

4

System failure in the batch middle

 Transfer 500$ between 2 accounts:

 The system crashes after step #1 →What happens?

Valid State Valid State
Invalid state

Begin End

Batch

#1: SavingAccount = SavingAccount – 500 #2: CheckingAccount = CheckingAccount + 500

5

Transaction

 Definition: a sequence of tasks executed as a whole, taking a
consistent database state into another consistent database
state

 Purpose: ensuring integrity and consistency of data

 Properties: ACID

 Atomicity

 All or none

 Consistency

 Leave data in a consistent state

 Not accept tasks that’s ½ done

 Isolation

 Like that transaction runs alone

 Durability

 Modifications are permanent

6

Atomicity and Durability: examples

ATOMICITY

Begin

SavingAcc= SavingAcc - 300

CheckingAcc= CheckingAcc + 300

Commit T1

➔ Stop all actions !!

Crash

DURABILITY

Begin

SavingAcc = ChekingAcc - 300

CheckingAcc = CheckingAcc + 300

Commit T1

➔ be sure that the current

account has been update !

Crash

7

 User transactions are executed as if they were the only

connected users to the database.

 Concurrency Control

 Most (all?) DBMSs are multi-user systems.

 The concurrent execution of many different transactions submitted
by various users must be organized such that each transaction does
not interfere with another transactions with one another in a way
that produces incorrect results.

 The concurrent execution of transactions must be such that each
transaction appears to execute in isolation.

Isolation

8

Agenda

 Transaction concepts & properties

 Transaction concurrency problems

 Isolation levels

 Lock

 Log and recovery

 Serializability checking

9

Example: Interacting Processes

 Assume the usual Sells(bar,beer,price) relation, and suppose

that Joe’s Bar sells only Bud for $2.50 and Miller for $3.00.

 Sally is querying Sells for the highest and lowest price Joe

charges.

 Joe decides to stop selling Bud and Miller, but to sell only

Heineken at $3.50.

10

Sally’s Program

 Sally executes the following 02 SQL statements called (min)

and (max) to help us remember what they do.

(max) SELECT MAX(price) FROM Sells

WHERE bar = ’Joe’’s Bar’;

(min) SELECT MIN(price) FROM Sells

WHERE bar = ’Joe’’s Bar’;

11

Joe’s Program

 At about the same time, Joe executes the following steps:

(del) and (ins).

(del) DELETE FROM Sells

WHERE bar = ’Joe’’s Bar’;

(ins) INSERT INTO Sells

VALUES(’Joe’’s Bar’, ’Heineken’, 3.50);

12

Strange Interleaving

 Although (max) must come before (min), and (del) must come

before (ins), there are no other constraints on the order of these

statements, unless we group statements into transactions.

 Suppose the steps execute in the order (max)(del)(ins)(min).

Joe’s Prices:

Statement:

Result:

 Sally sees MAX < MIN!

2.50, 3.00

(del) (ins)

3.50

(min)

3.50

2.50, 3.00

(max)

3.00

13

Problem 1: lost update

A1  balance

A1 A1 + 

balance A1

A2  balance

A2 A2 + 

balance A2

T
im

e

transaction 1

Data base

Connexion 1 Connexion 2

transaction 2

Lost

14

balance  balance + 

Read balance

Read balance

T
im

e

transaction 1

Data base

Terminal 1 Terminal 2

transaction 2

balance initial balance

Problem 2: non-repeatable read

15

UPDATE Account

SET BALANCE = 400

WHERE …

SELECT COUNT (*)

FROM Account

WHERE balance= 400

SELECT COUNT (*)

FROM Account

WHERE balance= 400

T
im

e

transaction 1

Data base

Terminal 1 Terminal 2

transaction 2

balance = 300

balance = 400

Results = N+ 

Phantom Read

Results = N

Problem 3: Phantom read

16

balance  balance + 

Rollback

Read balance

Read balance

T
im

e

transaction 1

Data base

Terminal 1 Terminal 2

transaction 2

Balance = 300

balance = 400

Balance = 400

balance = 300
Dirty read

Problem 4: dirty read

17

Agenda

 Transaction concepts & properties

 Transaction concurrency problems

 Isolation levels

 Lock

 Serializability checking

 Log and recovery

18

Isolation levels

 The level of isolation, or the height of the fence between

transaction, can be adjusted to control which transactional faults

are permitted.

 Isolation level is personal choice

 Example:

 Joe Runs serializable, but Sally doesn’t → Sally might see no prices for Joe’s Bar.

 i.e., it looks to Sally as if she ran in the middle of Joe’s transaction.

19

Isolation levels

 Read uncommitted

 This is the lowest isolation level. In this level, dirty reads are allowed (see below), so
one transaction may see not-yet-committed changes made by other transactions

 Read committed

 In this isolation level, a lock-based concurrency control DBMS implementation keeps
write locks (acquired on selected data) until the end of the transaction, but read locks
are released as soon as the SELECT operation is performed

 Repeatable reads

 In this isolation level, a lock-based concurrency control DBMS implementation keeps
read and write locks (acquired on selected data) until the end of the transaction.

 Serializable

 This is the highest isolation level.

 With a lock-based concurrency control DBMS implementation, serializability requires
read and write locks (acquired on selected data) to be released at the end of the
transaction, including range locks..

20

Isolation levels with concurrency problems

21

With SQL Server

SET TRANSACTION ISOLATION LEVEL

{ READ UNCOMMITTED

| READ COMMITTED

| REPEATABLE READ

| SNAPSHOT

| SERIALIZABLE

}

E.g.:

USE AdventureWorks2012;

GO

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

GO

22

Agenda

 Transaction concepts & properties

 Transaction concurrency problems

 Isolation levels

 Lock

 Log and recovery

 Serializability checking

23

Locks

 DBMSs implement the isolation property with

locks, that protect a transaction’s rows from being

affected by another transaction.

 Every lock has the following 3-properties:

 Granularity – the size of the lock

 Mode – the type of the lock

 Duration – the isolation mode of the lock

24

Lock Granularity

 Indicates the level/scope of lock use

25

A Database-Level Locking Sequence

 Good for batch processing

 T1 and T2 can not access the same database concurrently even
if they use different tables

 Unsuitable for online multi-user DBMSs

26

Table-Level Lock

 T1 and T2 can access the same database concurrently as
long as they use different tables

 Can cause bottlenecks when many transactions are trying to
access the same table

 Not suitable for multi-user DBMSs

27

Page-Level Lock

 A table spans several pages. Each page contains several rows
of one or more tables

 An entire disk page is locked

 Most frequently used multi-user DBMS locking method

28

Row-Level Lock

 Concurrent transactions can access different rows of the
same table even if the rows are located on the same page

 Improves data availability but with high overhead (each row
has a lock that must be read and written to)

29

Lock modes: Shared/Exclusive

 Exclusive lock

 Access is specifically reserved for the transaction that locked the object

 Must be used when the potential for conflict exists – when a transaction
wants to update a data item and no locks are currently held on that data
item by another transaction

 Granted if and only if no other locks are held on the data item

 Shared lock

 Concurrent transactions are granted Read access on the basis of a common
lock

 Issued when a transaction wants to read data and no exclusive lock is held
on that data item

 Multiple transactions can each have a shared lock on the same data item
if they are all just reading it

30

Lock Compatibility

 Locks may or may not be compatible with other Locks

 Examples

 Shared locks are compatible with all locks except exclusive

 Exclusive locks are not compatible with any other locks

LS LX

LS true false

LX false false

31

Blocks …

32

… Deadlocks

 Occurs when two transactions are blocking each other

 How to detects

 In Wait-for graph, there exist loops

33

Deadlock solution

 If a set of transactions is deadlocked

 Choose the victim

 Rollback victim transaction and redo

 How to customize the lock time-out setting

 SET LOCK_TIMEOUT function

 How to minimize deadlocks

 Access objects in same order

 Keep transactions short

 Use low isolation level

 Use bound connections

34

Remarks

 Keep transactions short

 Design transactions to avoid/minimize deadlocks

 In most cases: use SQL Server defaults for locking

 Be careful when use locking options

35

Agenda

 Transaction concepts & properties

 Transaction concurrency problems

 Isolation levels

 Lock

 Log and recovery

 Serializability checking

36

How RDBMS works with transactions

36

37

Transaction Recovery

 The database recovery process involves bringing the

database to a consistent state after failure.

 Transaction recovery procedures generally make use of

deferred-write and write-through techniques

38

Transaction Recovery

 Deferred write

 Transaction operations do not immediately update the physical
database

 Only the transaction log is updated

 Database is physically updated only after the transaction
reaches its commit point using the transaction log information

 If the transaction aborts before it reaches its commit point, no
ROLLBACK is needed because the DB was never updated

 A transaction that performed a COMMIT after the last
checkpoint is redone using the “after” values of the transaction
log

39

Transaction Recovery

 Write-through

 Database is immediately updated by transaction operations during
the transaction’s execution, even before the transaction reaches its
commit point

 If the transaction aborts before it reaches its commit point, a
ROLLBACK is done to restore the database to a consistent state

 A transaction that committed after the last checkpoint is
redone using the “after” values of the log

 A transaction with a ROLLBACK after the last checkpoint is
rolled back using the “before” values in the log

40

The Transaction Log

 Increases processing overhead but the ability to restore
a corrupted database is worth the price

 Log contains:

 A record for the beginning of transaction

 For each transaction component (SQL statement)

 Type of operation being performed (update, delete, insert)

 Names of objects affected by the transaction (the name of the table)

 “Before” and “after” values for updated fields

 Pointers to previous and next transaction log entries for the same
transaction

 The ending (COMMIT) of the transaction

 If a system failure occurs, the DBMS will examine the log for all
uncommitted or incomplete transactions and it will restore the database to
a previous state

41

Transaction Log Architecture

 Write-Ahead transaction log

 Flushing the pages

 Use of checkpoints

 Minimize what must be processed to recover

 Shrinking the transaction log

 DBCC SHRINKDATABASE (UserDB, 10);

 DBCC SHRINKFILE (AirlineReservation, 1);

42

A Transaction Log

43

Checkpoints

 Problem - Prevent Restart from scanning back to the start

of the log

 A checkpoint is a procedure to limit the amount of work for

Restart

Time

2. ckpt

1. write / commit /

abort records

4. write / commit /

abort records
5. crash

6. Restart:

• redo all writes

• undo uncommitted writes

3. all log records

are stable

44

Transaction log example

45

Implementing Restart (rev 1)

 Scan the log backwards from the end.

 Construct a commit list and page list during the scan

(assuming page level logging)

 Commit (T) record => add T to commit list

 Update record for P by T

 if P is not in the page list then

 add P to the page list

 if T is in the commit list, then redo the update,

else undo the update

46

Restart Algorithm (rev 2)

 No need to redo records before last checkpoint,

 Starting with the last checkpoint, scan forward in the log.

 Redo all update records. Process all aborts.

Maintain list of active transactions (initialized to content of

checkpoint record).

→ Reduce restart time by checkpointing frequently.

47

Transaction Recovery and Checkpoints

Transaction Recovery Action Required

None

Checkpoint System Failure

1

2

3

4

5

Roll forward

Roll back

Roll forward

Roll back

48

Agenda

 Transaction concepts & properties

 Transaction concurrency problems

 Isolation levels

 Lock

 Log and recovery

 Serializability checking

49

Serial and non-serial Schedules

 Serial schedule: transactions are ordered one after the
other

 Nonserial schedules: transactions are interleaved. There are
many possible orders or schedules → good performance

 Serializability theory attempts to determine the 'correctness'
of the schedules.

 The Objective of serializability is to find nonserial schedules that allow
transactions to execute concurrently without interfering with one another.

 A schedule S of n transactions is serializable if it is equivalent
to some serial schedules of the same n transactions.

50

The Scheduler

 Special DBMS program: establishes order of operations within
which concurrent transactions are executed

 Interleaves the execution of database operations to ensure
serializability and isolation of transactions

 To determine the appropriate order, the scheduler bases its actions on
concurrency control algorithms such as locking and time stamping

 Ensures computer’s central processing unit (CPU) is used
efficiently

 Default would be FIFO without preemption – idle CPU (during I/O) is
inefficient use of the resource and result in unacceptable response times
in within the multiuser DBMS environment

 Facilitates data isolation to ensure that two transactions do not
update the same data element at the same time

51

Conflicting operations

 Transactions are executing concurrently over the same data

 R(x) reads the x value of the object

 W(x) assigns the value v to x

 When they both access the data and at least one is executing a WRITE, a

conflict can occur

R(x) W(x)

R(x) ok Conflict

W(x) Conflict Conflict

Operations of T1 and T2 compatible permutable

T1 writes on A and T2 writes on A no no

T1 reads A and T2 writes on A no no

T1 reads or writes A and T2 reads or writes B yes yes

52

Precedence graph of a schedule

 Definition: there is a precedence from a transaction T1 on a

transaction T2 if there exists at least one no permutable

operation O1 from T1 with an operation O2 from T2 in the

serialisable schedule

 Serialisable condition: precedence graph with no loop

T1 T2 T3
T1 T2 T3

Serializable Non-serializable

53

 Example of Serializable schedule

 Example of non-serialisable schedule

→ How to detect is it not serializable?

Serialisable or not?

TimeT1 - reads balance1 T1 - reads balance2 T3 - reads balance2 T2 - reads balance2 T2 - writes. balance2

T2 - reads balance1 T2 - writes. balance1 T1 - reads balance1 T1 - reads balance2 T3 - writes. balance2

Time

T1 - reads balance1 T1 - reads balance2 T2 - reads balance2 T2 - writes. balance2 T3 - writes. balance2

T3 - writes. balance2 T2 - reads balance2 T2 - writes. balance2 T1 - reads balance1 T1 - reads balance2

T1 - reads balance1
T2 - reads

balance2
T3 – writes. balance2 T1 - reads balance2 T2 - writes. balance2

T1 - reads balance1 T2 - reads balance2 T3 - reads balance2 T1 - reads balance2 T2 - writes. balance2

54

Example (previous schedule)

 Serializable?

→ Is it possible to make this schedule serialisable? No

T1 - reads balance1
T2 - reads

balance2
T3 – writes. balance2 T1 - reads balance2 T2 - writes. balance2

T3 precedes T1 T1, T3 precede T2
T2 precedes T3

Time

T1 T2 T3Step 3 (balance2)

Step 4 (balance2)

Step 5 (balance2)
Step 5 (balance2)

55

Exercise: draw precedence graph

Step T 1 T 2 T 3

1 Read A

2 Read B

3 Read A

4 Read B

5 Write A

6 Write C

7 Write B

8 Write C

T1

T2

T3Step 8 (C)

Step 5 (A)

Step 5 (A)

Step 7 (B)

56

Excercise

 Consider schedule: r1 (x) r2 (y) w1 (y) w3 (x) w1 (t) w5 (x)

r4 (z) r2 (z) w4 (z) w5 (z) r3 (t) r5 (t)

 Transactions: 1,2 … 5

 Resources: x,y,z,r,t

 Question:

 Draw precedence graph

 Is this execution serializable? If yes, give a serial execution that is

equivalent to this one, otherwise explain why it is not

TAKE-HOME MESSAGES

 Transaction is a sequence of statements that runs as a unit to ensure ACID

properties

 Choose appropriate TRAN ISOLATION levels to avoid concurrency

problems while obtaining good performance

 Avoid and be careful with Deadlock

APPENDIX:

TRANSACTIONS WITH SQL SERVER

59

Considerations for Using Transactions

 Transaction guidelines

 Keep transactions as short as possible

 Use caution with certain Transact-SQL statements

 Avoid transactions that require user interaction

 Issues in nesting transactions

 Allowed, but not recommended

 Use @@trancount to determine nesting level

60

Transaction Types

 Explicit Transaction

 Explicitly define start and end

 Autocommit Transactions

 Every statement is committed or rolled back

 Implicit Transactions

 Statement after “Commit Transaction” or Rollback Transaction” starts

a new transaction

 SET IMPLICIT_TRANSACTIONS ON

61

Explicit Transaction

 Defining

BEGIN TRANSACTION

COMMIT TRANSACTION

ROLLBACK TRANSACTION

BEGIN TRANSACTION

INSERT INTO Extensions (PrimaryExt)

VALUES ('555–1212')

INSERT INTO Extensions (VoiceMailExt)

VALUES ('5551212')

ROLLBACK TRANSACTION

62

Implicit Transaction

 Using

 An implicit transaction starts when one of the following
statements is executed

➢ Transaction must be explicitly completed with COMMIT or
ROLLBACK TRANSACTION

SET IMPLICIT_TRANSACTIONS ON

∙ ALTER DATABASE

∙ CREATE

∙ DELETE

∙ DROP

∙ FETCH

∙ GRANT

∙ INSERT

∙ OPEN

∙ REVOKE

∙ SELECT

∙ TRUNCATE TABLE

∙ UPDATE

63

Savepoints

 For long transactions that contain many SQL statements,
intermediate markers, or savepoints, can be declared.
Savepoints can be used to divide a transaction into smaller
parts.

 By using savepoints, you can arbitrarily mark your work at
any point within a long transaction. This gives you the option
of later rolling back all work performed from the current
point in the transaction to a declared savepoint within the
transaction.

 For example, you can use savepoints throughout a long
complex series of updates, so if you make an error, you do
not need to resubmit every statement.

63

