
Thread Model

Thread and Memory Model

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 1 / 26



Thread Model

Thread Model

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 2 / 26



Thread Model

Thread

• What? a single sequential of execution

• SIMT on GPU
• Same instruction

• Same time

• Different data

• Natural for graphics and scientific computing

• A way to simplify core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 3 / 26



Thread Model

Thread

. . .

. . .

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 4 / 26



Thread Model

Thread: Software View

• Thread: a single flow of kernel execution

• Block: a bunch of thread (1D, 2D, 3D)
• blockDim.x, blockDim.y, blockDim.z

• Grid: a bunch of block (1D, 2D, 3D)
• gridDim.x, gridDim.y, gridDim.z

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 5 / 26



Thread Model

Thread: Restrictions

• Dimensions is fixed after kernel launch

• All blocks in a grid have the same dimension

• Block size and grid size are upper bounded

Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 26



Thread Model

Thread: Restrictions

• Dimensions is fixed after kernel launch

• All blocks in a grid have the same dimension

• Block size and grid size are upper bounded
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 6 / 26



Thread Model

Thread: Software View

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 3 4 5 6 7

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 3126

Global Thread ID

blockSize = 8

int globalThreadId = threadIdx.x + blockIdx.x * blockDim.x

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 7 / 26



Thread Model

Thread: Software View

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 8 / 26



Thread Model

Thread: Software View

• Where are we?
• 1D: x = threadIdx.x + blockIdx.x * blockDim.x

• 2D: y = threadIdx.y + blockIdx.y * blockDim.y

• 3D: z = threadIdx.z + blockIdx.z * blockDim.z

• How about gridDim?
• Number of blocks in each dimension in the grid

• Use case: 1D grid for a 2D image

• Length of a row: w = blockDim.x * gridDim.x

• Next row: x += w

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 26



Thread Model

Thread: Software View

• Where are we?
• 1D: x = threadIdx.x + blockIdx.x * blockDim.x

• 2D: y = threadIdx.y + blockIdx.y * blockDim.y

• 3D: z = threadIdx.z + blockIdx.z * blockDim.z

• How about gridDim?
• Number of blocks in each dimension in the grid

• Use case: 1D grid for a 2D image

• Length of a row: w = blockDim.x * gridDim.x

• Next row: x += w

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 9 / 26



Thread Model

Thread: Hardware View

• Streaming Processor (CUDA cores)

• Streaming Multiprocessor : A bunch of Streaming
Processors plus some extra Special Function Units
(sine/cosine/. . . )

• Graphics Processing Cluster : A bunch of Streaming
Multiprocessors

• Many simple cores ⇒ better performance

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 26



Thread Model

Thread: Hardware View

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 11 / 26



Thread Model

Thread: Hardware View

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 12 / 26



Thread Model

Thread: Assignment

• Each SM has “multiple of 32” cores

• Threads in SM execute in group of 32 threads
• A group of 32 thread inside a SM is called « Warp »

• Warp is unit of thread scheduling in SMs

• Blocks are assigned to SMs into multiple of warps
• Number of blocks per SM is constrained

• No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 26



Thread Model

Thread: Assignment

• Each SM has “multiple of 32” cores

• Threads in SM execute in group of 32 threads
• A group of 32 thread inside a SM is called « Warp »

• Warp is unit of thread scheduling in SMs

• Blocks are assigned to SMs into multiple of warps
• Number of blocks per SM is constrained

• No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 26



Thread Model

Thread: Assignment

• Each SM has “multiple of 32” cores

• Threads in SM execute in group of 32 threads
• A group of 32 thread inside a SM is called « Warp »

• Warp is unit of thread scheduling in SMs

• Blocks are assigned to SMs into multiple of warps
• Number of blocks per SM is constrained

• No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 26



Thread Model

Thread: Assignment

• Each SM has “multiple of 32” cores

• Threads in SM execute in group of 32 threads
• A group of 32 thread inside a SM is called « Warp »

• Warp is unit of thread scheduling in SMs

• Blocks are assigned to SMs into multiple of warps
• Number of blocks per SM is constrained

• No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 26



Thread Model

Thread: Assignment

• Each warp is executed in SIMD
• All threads must execute same instruction at any time

• Fact
• Not all warps are scheduled at anytime

• Wait for data

• Branch divergence

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 14 / 26



Thread Model

Thread: Assignment

• CUDA virtualizes the physical hardware
• Thread : virtualized scalar processor

• registers

• PC

• state

• Block is a virtualized multiprocessor

• threads

• shared memory

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 15 / 26



Thread Model

Thread: Branch divergence

Branch

Path A

Path B

Branch

Path A

Path B

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 16 / 26



Thread Model

Thread: Branch divergence

• When?
• Condition

• Divergence

if threadIdx.x > 2:

• No divergence

if threadIdx.x / WARP_SIZE > 2:

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 17 / 26



Thread Model

Thread: Latency Tolerance

• When a warp does something with high latency
• Pause it

• Schedule next warp

• No context switch
• Large register file

• No need to “switch” register content to memory

• Zero overhead

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 18 / 26



Thread Model

Thread: Latency Tolerance

warp 8 instruction 11

Instruction scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

.

time

warp 3 instruction 96

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 19 / 26



Thread Model

Thread: Latency Tolerance

• Latency tolerance relies on many warps

• Branch divergence does not affect GPU high throughput like
CPU

• CPU focuses on low latency
• Branch is important

• Branch prediction is even more important

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 20 / 26



Thread Model

Block size in CUDA

• Previously, in launching kernel

kernelName[gridSize, blockSize](args...)

• Example

pixelCount = imageWidth * imageHeight
blockSize = 64
gridSize = pixelCount / blockSize
grayscale[gridSize, blockSize](devInput, devOutput)

• This is 1D kernel launch
• numBlock is essentially gridDim.x

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 26



Thread Model

Block size in CUDA

• For 2D kernel launches
• Grid size and block size are 2-dimensional tuples

• Launch a kernel with of 8× 8 blocks, each block has 32× 32
threads

gridSize = (8, 8)
blockSize = (32, 32)
grayscale[gridSize, blockSize](devInput, devOutput)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 22 / 26



Thread Model

Labwork & Exercises 4: Threads
• Copy labwork 3 code to labwork 4

• Improve labwork 4 code to use 2D blocks

• Use time.time() to measure speedup

• Write a report (in LATEX)
• Name it « Report.4.threads.tex »

• Explain how you improve the labwork

• Try experimenting with different 2D block size values

• Plot a graph of block size vs speedup

• Compare speedup with previous 1D grid

• Answer the questions in the upcoming slides, explain why

• Push the report and your code to your forked repository

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 26



Thread Model

Thread: Exercises 1

Consider a GPU having the following specs (maximum numbers):

• 512 threads/block

• 1024 threads/SM

• 8 blocks/SM

• 32 threads/warp

What is the best configuration for thread blocks to implement
grayscaling?

• 8× 8

• 16× 16

• 32× 32

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 24 / 26



Thread Model

Thread: Exercises 2

Consider a device SM that can take max

• 1,536 threads

• 4 blocks

Which of the following block configs would result in the most
number of threads in the SM?

• 128 threads/blk

• 256 threads/blk

• 512 threads/blk

• 1,024 threads/blk

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 25 / 26



Thread Model

Thread: Exercises 3

Consider a vector addition problem

• Vector length is 2,000

• Each thread produces one output

• Block size 512 threads.

How many threads will be in the grid?

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 26


	Thread Model

