Thread and Memory Model

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Thread Model

ad and Mem: Model Tran Giang Son, tran-giang.son@usth.edu.vn




Thread

« What? a single sequential of execution
e SIMT on GPU

o Same instruction

o Same time

o Different data

o Natural for graphics and scientific computing

o A way to simplify core

and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Thread Model

Thread

2
S S

2eo00o00ee 2RReeeee
D D
L : 2

)))‘5)

Thread and Memory Model

Tran Giang Son, tran-giang.son@usth.edu.vn



Thread Model

Thread: Software View

o Thread: a single flow of kernel execution
« Block: a bunch of thread (1D, 2D, 3D)

« blockDim.x, blockDim.y, blockDim.z
« Grid: a bunch of block (1D, 2D, 3D)

e gridDim.x, gridDim.y, gridDim.z

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Thread: Restrictions

o Dimensions is fixed after kernel launch
o All blocks in a grid have the same dimension

o Block size and grid size are upper bounded

and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Thread Model

Thread: Restrictions

o Dimensions is fixed after kernel launch
o All blocks in a grid have the same dimension

o Block size and grid size are upper bounded

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,2): (2147483647, 65535, 65535)

and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn




Thread Model

Thread: Software View

Global Thread ID

[oTiT2]3Ta]sTe]7]s]oJro]uilia]is]ia]is]is]iz] 18] 1o 20 21 [22]23]24 25 ] 26 [27 [ 28] 29 [ 30]51 ]
threadldx.x threadldx.x threadldx.x threadldx.x

ol TafslalsTelz]ol i [alsla]sTel7 ol i Tals]als 67l i]2]3]4]s]6]7
blockldx.x = 0 blockldx.x = | blockldx.x = 2 blockldx.x = 3

blockSize = 8

int globalThreadld = threadldx.x + blockIdx.x * blockDim.x

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 7/ 52



Thread Model

Thread: Software View
T

Block (0,0) | Block (1,0 Block (2,0)

Black (0,1] 1 Block (1,1 Block 2.1) —

Thread Thread | Thread Thread
(0.0) (1,00 (20 . (150)
Thread Thread Thread S0 Thread
(0.1) (1,1 2.1) (15.1)
. .
.

I I I | L
Tran Giang Son, tran-giang.son@usth.edu.vn




Thread Model

Thread: Software View

e Where are we?

e 1D: x = threadIdx.x + blockIdx.x * blockDim.x
e 2D:y = threadIdx.y + blockIdx.y * blockDim.y
e 3D: z = threadIdx.z + blockIdx.z * blockDim.z

Tran Giang Son, tran-giang.son@usth.edu.vn

Thread and Memory Model



Thread Model

Thread: Software View

e Where are we?

e 1D: x = threadIdx.x + blockIdx.x * blockDim.x
e 2D:y = threadIdx.y + blockIdx.y * blockDim.y
e 3D: z = threadIdx.z + blockIdx.z * blockDim.z

e How about gridDim?

o Number of blocks in each dimension in the grid

o Use case: 1D grid for a 2D image

e Length of a row: w = blockDim.x * gridDim.x

e Next row: x += w

Tran Giang Son, tran-giang.son@usth.edu.vn

Thread and Memory Model



Thread Model

Thread: Hardware View

+ Streaming Processor (CUDA cores)

o Streaming Multiprocessor : A bunch of Streaming
Processors plus some extra Special Function Units
(sine/cosine/. . .)

o Graphics Processing Cluster : A bunch of Streaming
Multiprocessors

o Many simple cores = better performance

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 10 / 52



Thread: Hardware View

and Mem: 0 Tran Giang Son, tran-giang.son@usth.edu.vn




Thread Model

Thread: Hardware View
——

Dispateh Uit Dispateh Unit Dispatch Unit Dispateh Unit
s s s i

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

core Core | Core
core core | Core
core
core
core

Core

Core

£ 158 8 8 R R R

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Oispatch Unit —
s + s +

Register File (16,384 x 32-bit Register File (16,384 x 32-bit)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 12



Thread Model

Thread: Assignment

o Kach SM has “multiple of 32” cores

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 52



Thread Model

Thread: Assignment

o Kach SM has “multiple of 32” cores
o Threads in SM execute in group of 32 threads
o A group of 32 thread inside a SM is called « Warp »

o Warp is unit of thread scheduling in SMs

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 52



Thread Model

Thread: Assignment

o Kach SM has “multiple of 32” cores

o Threads in SM execute in group of 32 threads
o A group of 32 thread inside a SM is called « Warp »
o Warp is unit of thread scheduling in SMs

o Blocks are assigned to SMs into multiple of warps

o Number of blocks per SM is constrained

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 52



Thread Model

Thread: Assignment

Each SM has “multiple of 32” cores

o Threads in SM execute in group of 32 threads
o A group of 32 thread inside a SM is called « Warp »
o Warp is unit of thread scheduling in SMs

o Blocks are assigned to SMs into multiple of warps

o Number of blocks per SM is constrained

o No specific mapping between thread and core

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 13 / 52



Thread: Assignment

o Each warp is executed in SIMD

o All threads must execute same instruction at any time
o Fact

o Not all warps are scheduled at anytime

o Wait for data

e Branch divergence

and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 14 / 52



Thread: Assignment

o CUDA virtualizes the physical hardware
o Thread : virtualized scalar processor
e registers
o+ PC
e state
o Block is a virtualized multiprocessor
o threads

e shared memory

and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 15 / 52



Thread: Branch divergence

SRRRRRY
PEULLEL
b
b
RRRRRRY

Tran Giang Son, tran-giang.son@usth.edu.vn



Thread Model

Thread: Branch divergence

o When?
o Condition
o Divergence
if threadIdx.x > 2:
o No divergence

if threadIdx.x / WARP_SIZE > 2:

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 17 / 52



Thread Model

Thread: Latency Tolerance

e When a warp does something with high latency
o Pause it
o Schedule next warp

o No context switch
o Large register file

o No need to “switch” register content to memory

e Zero overhead

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Thread Model

Thread: Latency Tolerance

Instruction scheduler

time

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 19 / 52




Thread Model

Thread: Latency Tolerance

o Latency tolerance relies on many warps

o Branch divergence does not affect GPU high throughput like
CPU

o CPU focuses on low latency
o Branch is important

o Branch prediction is even more important

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 20 / 52



Thread Model

Block size in CUDA

o Previously, in launching kernel
kernelName [gridSize, blockSize] (args...)
o Example

pixelCount = imageWidth * imageHeight

blockSize = 64

gridSize = pixelCount / blockSize
grayscale[gridSize, blockSize] (devInput, devOutput)

e This is 1D kernel launch

e numBlock is essentially gridDim.x

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 21 / 52



Thread Model

Block size in CUDA

e For 2D kernel launches
o Grid size and block size are 2-dimensional tuples

e Launch a kernel with of 8 x 8 blocks, each block has 32 x 32
threads

gridSize = (8, 8)
blockSize = (32, 32)
grayscale[gridSize, blockSize] (devInput, devOutput)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn

N
N
~
<
N



Thread Model

Labwork & Exercises 4: Threads

o Copy labwork 3 code to labwork 4

e Improve labwork 4 code to use 2D blocks

o Use time.time() to measure speedup

« Write a report (in IATEX)

Name it « Report.4.threads.tex »

Explain how you improve the labwork

Try experimenting with different 2D block size values
Plot a graph of block size vs speedup

Compare speedup with previous 1D grid

Answer the questions in the upcoming slides, explain why

o Push the report and your code to your forked repository

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 23 / 52



Thread Model

Thread: Exercises 1

Consider a GPU having the following specs (maximum numbers):
+ 512 threads/block
+ 1024 threads/SM
+ 8 blocks/SM
32 threads/warp

What is the best configuration for thread blocks to implement
grayscaling?

e 8X8
s 1616

e 353

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 24 / 52



Thread Model

Thread: Exercises 2

Consider a device SM that can take max
e 1,536 threads
e 4 blocks

Which of the following block configs would result in the most
number of threads in the SM?

+ 128 threads/blk
+ 256 threads/blk
» 512 threads/blk
« 1,024 threads/blk

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 25 / 52




Thread Model

Thread: Exercises 3

Consider a vector addition problem
e Vector length is 2,000
e Each thread produces one output
o Block size 512 threads.

How many threads will be in the grid?

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 26 / 52



I'hread

Memory

Tran Giang Son, tran-giang.son@usth.edu.vn




Memory

o Example of a kernel doing vector addition

def add(out, inl, in2):

tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockD:
out [tid] = ini1[tid] + in2[tid]

Thread and Memory Model

Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52



Memory

o Example of a kernel doing vector addition

def add(out, inl, in2):

tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockD:
out [tid] = ini1[tid] + in2[tid]

« GTX 1080: 352 GB/s global memory bandwidth

Thread and Memory Model

Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52



Memory

o Example of a kernel doing vector addition

def add(out, inl, in2):
tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockD:
out [tid] = ini1[tid] + in2[tid]

« GTX 1080: 352 GB/s global memory bandwidth

o Single precision float : 4 bytes

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52



Memory

o Example of a kernel doing vector addition

def add(out, inl, in2):
tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockD:

out[tid] = ini[tid] + in2[tid]
« GTX 1080: 352 GB/s global memory bandwidth
o Single precision float : 4 bytes

« Max 88 giga single precision float loaded from/to global
memory per sec

Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52

Thread and Memory Model



Memory

o Example of a kernel doing vector addition

def add(out, inl, in2):
tid = cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockD:

out[tid] = ini[tid] + in2[tid]
« GTX 1080: 352 GB/s global memory bandwidth
o Single precision float : 4 bytes

« Max 88 giga single precision float loaded from/to global
memory per sec

o If no cache: 2 in, 1 out per FLOP = max 29.3 GFLOPS

Tran Giang Son, tran-giang.son@usth.edu.vn 28 / 52

Thread and Memory Model



Memory

Something’s wrong.

GeForce 10 (10xx) series

Model Launch
GeForce GTX 1080 May 27, 2016
GeForce GTX 1080 Ti March 10, 2017
NVIDIA TITAN X August 2, 2016

GeForce 10 series - Wikipedia
https://en.wikipedia.org/wiki/GeForce_10_series

Processing power (GFLOPS)
Single precision (Boost)
8228 (8873)

10609 (11340)

10157 (10974)

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Memory

« Key challenge

o Fast computation but slow memory?
o Lots of memory
o Fast + Lots == Expensive

o Hierarchical design

Tran Giang Son, tran-giang.son@usth.edu.vn

and Memory Model

30 / 52



I'hread Model

Memory Hierarchical Design: Host

l L2: 256KB ‘ l L2: 256KB ‘ l L2: 256KB ‘ l L2: 256KB ‘

! ! $ !

l L3: 6-8MB ‘

!

L4: 128MB (Optional, depending on CPU)

!

Main Memory

Large
Laaaarge
LAAAAAAAAAAAARGE

Tran Giang Son, tran-giang.son@usth.edu.vn



Memory Hierarchical Design: Device

Grid

Block (0, 0) Block (1, 0)
Shared memory Shared memory
Regs Regs Regs Regs
Tfread Tfread Tfread Tfread
(0,0) (1,0) (0, 0) (1,0)
! ! l !
Global memory
(

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 32 /52



Memory Hierarchical Design: Device

Grid
Block (0, 0) Block (1, 0)
Registers Shared memory Shared memory
o Fastest
= OD-Chip only Regs Regs Regs Regs
e No off-chip bandwidth ! 1 i i
» Only accessible by a thread 0.0 T 0oy I o ) (O o)
o Lifetime of a thread
i ! i !
Global memory

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 33 /52



Memory Hierarchical Design: Device

Shared Memory
o Extremely fast
o Highly parallel
o Restricted to a block

Thread and Memory Model

Grid

Block (0, 0)

Shared memory

Akl

Thread Thread Thread
(0,0 (1,0 (0,0)

! ! !

Global memory

Block (1, 0)

Shared memory

|

Thread
(1,0)

!

Tran Giang Son, tran-giang.son@usth.edu.vn



Memory Hierarchical Design: Device

Grid
Global Memory Block (0, 0) Block (1, 0)
o Typically implemented in
DRAl\/I Shared memory Shared memory
o High access latency:
400-800 cycles Regs I Regs I Begs [ Regs I
o Finite access bandwidth i 1 ! ]
» Potential of traffic s Ui o o
congestion
o Throughput up to 900GB/s ! ! ! !
(Volta V100 on HBM2) Global memory

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 35 / 52



Memory Hierarchical Design: Device

Grid
Block (0, 0) Block (1, 0)
Constant Memory
e Small : 64KB/block Shared memory Shared memory
» Read only from device
» Writable from host Regs || | Rees Regs || | Ress
e Short latency and high ! ! i I
bandwidth T || Tam | |
o If warps accesses the
same location ! - ! !
Global memory

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn




Memory Hierarchical Design: Device

Memory Scope Lifetime Latency

register  thread thread 1

local thread thread 100x
shared blocks thread i
global grid app 100x
constant  grid app 1x

Note: “local” memory is in fact a part of the global memory.

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Memory

Memory of GTX 1080

‘Warp Scheduler Warp Scheduler
p— p— p—
T T s
RogistorFlo (16,384 x 32:i) Rogisor Flo (16,384 x 321
Core  Core & Core. oSt
« GDDR5X T =

Core  Core Core

e 256-bit wide bus T T =

o 352GB/s (ref: PCIEX3: —+ = —
985MB /sec/lane) =

o Unified 2MB L2 cache

e 1 GPC consists of 5 SMs,

each SM W e -

e 4x 64KB registers Registr File (16,384 Rogistor il (16,384 x 32:0)

» 96KB shared memory
e 48KB L1 cache

e Memory compression
engine

qEEEEEEE

ad and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 38



Maximizing Computation

Previously. . .

def add(out, inl, in2):
tid = threadIdx.x + blockIdx.x * blockDim.x
out[tid] = in1[tid] + in2[tid];

29.3 GFLOPS

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 39 / 52



Maximizing Computation: Memory Architecture

» Execution speed is based on data locality
o Temporal locality: just-accessed is likely to be accessed again

» Spatial locality: nearby data is likely to be used soon (image,
video, sound)

o Order of performance
o Registers
o Shared memory / Constant memory (temporal locality)

» Texture memory (spatial locality)

e Global memory

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 40 / 52



Maximizing Computation: Memory Architecture

 YOU dictate:
o visibility
o access speed
o How?

o Access to registers need fewer instructions than global
memory

o Aggregate register files bandwidth ~ two orders of magnitude
that of the global memory

o Shared memory is part of the address space

e Requires load/store

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 41 / 52



Maximizing Computation: Memory Architecture

o Global memory access is performance bottleneck
o Less global memory access, better perf

o Tiling partition the data into small chunks, fittable into
shared memory

« Can speed up with coalesced read/write

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 42 / 52



Maximizing Computation: Memory Coalesce

o Memory access are in transactions
o A block of 32, 64, 128, 256 bytes
» Coalesced read/writes:
« Parallel read/writes from threads in a block
o Sequential memory locations. ..
o ...with appropriate alignment

e Minimize global memory bandwidth requirement

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 43 / 52



Maximizing Computation: Memory Alignment

o Addresses being powers-of-two bytes (4 to 16) are aligned

o Aligned addresses can be accessed with a single memory
instruction

o All other accesses are split in multiple instructions.

= Better performance with aligned addresses

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 44 / 52



Maximizing Computation: Coalesce and Alignment

o Structure of array vs Array of structure

AoS = [{
ri= 10
o205
bzE30

e
T 5
g: 25,
bee35

1]

SoA = {
- 10,151
o= 205 951
b= =[30-=385]

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 45 / 52



Maximizing Computation: Coalesce and Alignment

o Array of Structs
» More readable: objects are kept together
o Better cache locality: members are accessed together
o Better coalesce
e e.g. RGB are used together in case of grayscaling
o Struct of Arrays
o Potentially more efficient in several cases
e e.g. processing one channel only

o Less paddings: only between array, not between struct

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Maximizing Computation

o Shared memory is fast, IF
o All threads in warp access the same location

e Or linear access

o Shared memory’s random access is slow

o Bank conflict

and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn




Maximizing Computation

Thread local computation
e Where are we?
tid = threadIldx.x + blockIdx.x * blockDim.x

« Load data from global memory (coalesced)

r = inputImage[tid, 0]
g = inputImage[tid, 1]
b = inputImagel[tid, 2]

e Do computation with registers
gray = np.uint8({r + g +b) /:3)
« Write back to global memory (coalesced)

inputImage[tid, 0] = gray

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Maximizing Computation
Block local computation
e Where are we?

e Load data to shared memory

tile = cuda.shared.array(
(cuda.blockDim.x, cuda.blockDim.y),
numba.uint8)
tidx =
Tioyr =
tile[cuda.threadIdx.x, cuda.threadIdx.y] = src[tidx, tidy, 0]
o Synchronize: wait all threads in the same block to reach this

point
cuda.synchronize ()
o (Calculate on shared memory

« Write back to global memory (coalesced)

ad and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



Labwork 5: Gaussian Blur Convolution

o Copy your grayscaling kernel in labwork 4 to labwork 5

o Change it to 7x7 Gaussian blur convolution

o Without shared memory

« With shared memory (copy the filter into shared memory)
o Use time.time() to measure speedup
« Write a report (in BTEX)

o Name it « Report.5.gaussian.blur.tex »

o Explain how you implement the Gaussian Blur filter

o Try experimenting with different 2D block size values

« Plot a graph of block size vs speedup (with/without shared
memory)

o Push the report and your code to your forked repository
Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn



http://ieeexplore.ieee.org/document/6738436/
http://ieeexplore.ieee.org/document/6738436/

Extra: Gaussian Blur Convolution

» Convolution
e Mostly to blur the input image

e The 2D kernel follows a normal distribution

F ,U.r)2 o (y = My)z
202

G(T>y) = 27T02 €xXp | —

o ¢ : standard deviation of the distribution
e i : Mean of the kernel in horizontal axis

e fiy : Mean of the kernel in vertical axis

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 51 / 52



Extra: Gaussian Blur Convolution

« Example 7 x 7 (1003 total)

0==1 2 ()
gl oS 3
1359 = 9¢ 59 [ 13
22 297 1592197 D)
136590 O 69 L 13
Skl T |
g e 1 2 =

() flemml it Nl U el o)
Ol O =N OO

Thread and Memory Model Tran Giang Son, tran-giang.son@usth.edu.vn 52 / 52



	Thread Model
	Memory

