Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

ICT Department, USTH

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

Data

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

- Large-scale Data is Everywhere!
 - Commercial and scientific databases
 - Data generation and collection technologies
- Gather whatever data you can whenever and wherever possible.
 - Value either for the purpose collected or for a purpose not envisioned.

Data

• Data collected and warehoused

- Web data
 - Google: Petabytes of web data
 - Facebook: billions of active users
- Purchases at department/grocery stores, e-commerce
 - Amazon: millions of visits/day
- Bank/Credit Card transactions

- Multiple types of data: tables, time series, images, graphs, etc
- Spatial and temporal aspects
- Interconnected data of different types:
 - mobile phone: location of the user, friendship information, check-ins to venues, opinions through twitter, images though cameras, queries to search engines

• Example: document data

- Web as a document repository: estimated 50 billions of web pages
- Wikipedia: 6.4 million articles (and counting)
- Online news portals: steady stream of 100's of new articles every day
- Twitter: 300 million tweets every day

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

- Example: network data
 - Web: 50 billion pages linked via hyperlinks
 - Facebook: 2.9 billion users
 - Twitter: 186 million users
 - Instant messenger: 2 billion users
 - Blogs: 250 million blogs worldwide, presidential candidates run blogs

- Example: genome data
 - https://www.internationalgenome.org/data
 - Full sequence of 1000 individuals
 - 3×10^9 nucleotides per person, 3×10^{12} nucleotides
 - Lots more data in fact: medical history of the persons, gene expression data

• Example: Climate data

- http://www.ncdc.gov/oa/climate/ghcn-monthly/index.php
- a database of temperature, precipitation and pressure records managed by the National Climatic Data Center, Arizona State University and the Carbon Dioxide Information Analysis Center
- 6000 temperature stations, 7500 precipitation stations, 2000 pressure stations
- Spatiotemporal data

- Example: Behavioral data
 - Mobile phones today record a large amount of information about the user behavior
 - GPS records position
 - Camera produces images
 - Communication via phone and SMS
 - Text via facebook updates
 - Association with entities via check-ins
 - Amazon collects all the items that you browsed, placed into your basket, read reviews about, purchased.
 - Google and Bing record all your browsing activity via toolbar plugins. They also record the queries you asked, the pages you saw and the clicks you did.

What

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object Examples: eye color of a person, temperature, etc.
- Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
- Object is also known as record, point, case, sample, entity, or instance

What: Attributes

• Categorical

- Eye color, zip codes, words, rankings (e.g, good, fair, bad), height in {tall, medium, short}
- Nominal (no order or comparison) vs Ordinal (order but not comparable)
- Numeric
 - Dates, temperature, time, length, value, count.
 - Discrete (counts) vs Continuous (temperature)
 - Special case: Binary attributes (yes/no, exists/not exists)

What: Record data

- Multi-dimensional space: Same fixed set of numeric attributes
- n-by-d data matrix, where there are n rows, one for each object, and d columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Record data

What: Categorical data

• Data that consists of a collection of records, each of which consists of a fixed set of categorical attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	High	No
2	No	Married	Medium	No
3	No	Single	Low	No
4	Yes	Married	High	No
5	No	Divorced	Medium	Yes
6	No	Married	Low	No
7	Yes	Divorced	High	No

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

What: Transactional data

- Each record (transaction) is a set of items.
- A set of items can also be represented as a binary vector, where each attribute is an item.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Transactional data

What: Ordered data

- Genomic sequence data
- Data is a long ordered string

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCGCGCGCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC

What: Ordered data

- Time series
 - Sequence of ordered (over "time") numeric values.

What: Graph data

• Examples: Web graph and HTML Links

Graph data

Data Mining

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

Why

- Cheaper and more powerful computers
- Strong competitive pressure
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Why

- Research data collected and stored at enormous speeds
 - Remote sensors on a satellite
 - NASA EOSDIS: petabytes of earth science data / year
 - Telescopes scanning the skies
 - High-throughput biological data
 - Scientific simulations
 - Terabytes of data generated in a few hours
- Data mining helps scientists
 - in automated analysis of massive datasets
 - in hypothesis formation

Why

Big data—a growing torrent

\$600 to buy a disk drive that can store all of the world's music

5 billion mobile phones in use in 2010

30 billion pieces of content shared on Facebook every month

40% projected growth in global data generated per year vs. 70 growth in global IT spending

235 terabytes data collected by the US Library of Congress in April 2011

> 15 out of 17 more data stored per company than the US Library of Congress

Big data—capturing its value

\$300 billion potential annual value to US health care -- more than

double the total annual health care spending in Spain

€250 billion nnual value to Europe's public sector

administration - more than GDP of Greece

\$600 billion

using personal location data globally

potential increase in retailers' operating margins 60% possible with big data

140.000-190,000

more deep analytical talent positions, and

1.5 million more data-savvy managers needed to take full advantage of big data in the United States

Why

Healthcare

Climate change

Green Energy

Argiculture production

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

What

• Many Definitions

- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns
- The use of efficient techniques for the analysis of very large collections of data and the extraction of useful and possibly unexpected patterns in data.
- The discovery of models for data

What

Pipeline

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

What

- Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems
- Difficult data
 - Large-scale
 - High dimensional
 - Heterogeneous
 - Complex
 - Distributed
- A key component of the emerging field of data science and data-driven discovery

Database Technology, Parallel Computing, Distributed Computing

Introduction to Data Mining

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

What: Tasks

- Prediction Methods
 - Use some variables to predict unknown or future values of other variables.
- Description Methods
 - Find human-interpretable patterns that describe the data.

What: Tasks

Introduction to Data Mining

Classification

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

What: Prediction Methods - Classification

• Find a model for class attribute as a function of the values of other attributes

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes

Input

Rules

Introduction to Data Mining

What: Prediction Methods - Classification

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Undergrad	7	?
2	No	Graduate	3	?
3	Yes	High School	2	?

- Credit card transactions: legitimate or fraudulent
- Land covers: water bodies, urban areas, forests, etc. using satellite data
- News stories: finance, weather, entertainment, sports, etc.
- Identifying intruders in the cyberspace
- Tumor cells: benign or malignant
- Secondary structures of protein: alpha-helix, beta-sheet, or random coil

• Fraud Detection

• Goal: Predict fraudulent cases in credit card transactions.

• Approach:

- Use credit card transactions and the information on its account-holder as attributes.
- When does a customer buy, what does he buy, how often he pays on time, etc
- Label past transactions as fraud or fair transactions.
- Learn a model for the class of the transactions.
- Use this model to detect fraud by observing credit card transactions on an account.

- Customer loyalty
 - Goal: To predict whether a customer is likely to be lost to a competitor.
 - Approach:
 - Use detailed record of transactions with each of the past and present customers, to find attributes.
 - How often the customer calls, where he calls, what time-of-the day he calls most, his financial status, marital status, etc.
 - Label the customers as loyal or disloyal.
 - Find a model for loyalty.

• Sky Survey Cataloging

- Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images. 3000 images with 23,040 x 23,040 pixels per image.
- Approach:
 - Segment the image.
 - Measure image attributes (features) 40 of them per object.
 - Model the class based on these features.

Regression

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

What: Regression

- Predict continuous valued variable
 - Based on the values of other variables
 - Linear or nonlinear model of dependency
- Extensively studied
 - Statistics
 - Neural network

Example: Regression

• Examples:

- Predicting sales amounts of new product based on advetising expenditure
- Predicting wind velocities as a function of temperature, humidity, air pressure, etc
- Time series prediction of stock market indices

Clustering

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

What

- Finding groups of objects
 - Similar objects in the same group
 - Different from objects in other groups

Why

• Understanding

- Custom profiling for targeted marketing
- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group stocks with similar price fluctuations
- Summarization
 - Reduce the size of large data sets

Example: Cluster Analysis

• Market Segmentation

- Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.
- Approach:
 - Collect different attributes of customers based on their geographical and lifestyle related information.
 - Find clusters of similar customers.
 - Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Example: Cluster Analysis

- Document Clustering:
 - Goal: To find groups of documents that are similar to each other based on the important terms
 - Approach:
 - Identify frequently occurring terms in each document
 - Form a similarity measure based on the frequencies of different terms
 - Use similarity to cluster

Association Rules

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

What

- Input: set of records
 - Some number of items from a given collection
- Ouput: dependency rules
 - predict occurrence of an item based on occurrences of other items

What

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered: {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

Why

- Market-basket analysis
 - Sales promotion, shelf management, and inventory management
- Telecommunication alarm diagnosis
 - Find combination of alarms that occur together frequently in the same time period
- Medical Informatics
 - Find combination of patient symptoms and test results associated with certain diseases

Example: Association Rules

- An Example Subspace Differential Coexpression Pattern from lung cancer dataset
 - Enriched with the TNF/NFB signaling pathway
 - Well-known to be related to lung cancer
 - P-value: 1.4×10^{-5} (6/10 overlap with the pathway)

Example: Association Rules

Example: Association Rules

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion Detection
 - Identify anomalous behavior from sensor networks for monitoring and surveillance.
 - Detecting changes in the global forest cover.

Disadvantages

Introduction to Data Mining

Tran Giang Son, tran-giang.son@usth.edu.vn

Why not?

- Scalability
- High Dimensionality
- Heterogeneous and Complex Data
- Data Ownership and Distribution
- Non-traditional Analysis