VVVVVVVVVVVVVVVVVVVVVVV

ADVANCED DATABASE

Distributed and high performance NoSQL database systems

Dr. NGUYEN Hoang Ha
Email: nguyen-hoang.ha@usth.edu.vn

| have no SQL experience
But | am good at NO SQL

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE

geek & poke

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sQL"

Leverage the NoSQL boom

VVVVVVVVVVVVVVVVVVVVVVV

Agenda

* NoSQL Overview
" |ntroduction to MongoDB
= MongoDb Sharding

VVVVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVVVV

Relational database

Customers

D |iname |fname |address lcy |sute lzp

— 1122 Brust Andrew 123 MainSt. New York NY 10099
3214 Doe John 321EIm St Anytown M| 40001

Orders

amount |tax | shipdate

3001 22 500 40 2/20/2012
3002 122 250 17 3/18/2012
3003 3214 1700 150 3/20/2012

A NoSQL example

321 Waterford Crescent.

Customers
ID: Iname: fname: address:
1122 | Brust Andrew 123 Main St.
ID: Iname: fname: address:
3214 Doe John
Orders
ID: customerlD:
3001 | [
ID: customerlD:
3002 11132
ID: amount:
3003 1700

amount:

500

amount:

250

tax:
150

VVVVVVVVVVVVVVVVVVVVVVV

city: state: Zip:
New York NY 10099

village: | county: postal code:
Stodday BlLancashire § LA2 6ET

tax: processdate:
40 2/20/2012
shipdate:

3/18/2012

NoSQL: Documents and Collections

Customer

\/\

Customer collections

Order

\/\

Order collections

VVVVVVVVVVVVVVVVVVVVVVV

Web Scale

VVVVVVVVVVVVVVVVVVVVVVV

= This term used to justify NoSQL

= Millions concurrent users
= Amazon

= Google

= Non-transactional tasks

® Loading catalog

= Environment preferences

What is NoSQL? 77

= NoSQL is a class of database management system identified
by its non-adherence to the widely used relational database
management system (RDBMS) model with its structured
query language (SQL).

= NoSQL has evolved to mean “Not Only” SQL

"= NoSQL has become prominent with the advent of web scale
data and systems created by Google, Facebook, Amazon,
Twitter and others to manage data for which SQL was not
the best fit.

NoSQL Definiton 77

From www.nosql-database.org:

Next Generation Databases mostly addressing some of the points:
being non-relational, distributed, open-source and horizontal
scalable.The original intention has been modern web-scale
databases.The movement began early 2009 and is growing rapidly.
Often more characteristics apply as: schema-free, easy replication
support, simple API, eventually consistent / BASE (not ACID), a
huge data amount, and more.

Beginning NoSQL 7%

= One of first uses of the phrase NoSQL is due to Carlo
Strozzi, circa 1998.

= Characteristics:

A fast, portable, open-source RDBMS

A derivative of the RDB database system

Not a full-function DBMS, per se, but a shell-level tool

User interface: Unix shell

Strozzi’'s NoSQL RDBMS was based on the relational model

Does not have an SQL interface 2 NoSQL means “no sql” i.e., we

are not using the SQL language. E

NOSQL Toda)l VVVVVVVVVVVVVVVVVVVVVVV

= More recently:
= The term has taken on different meanings

= One common interpretation is “not only SQL”

= Most modern NoSQL systems diverge from the relational model
or standard RDBMS functionality:

= The data model: not based on relations

" The query model: not relational algebra but graph traversal,
not Tuple calculus but text search or map/reduce

= The implementation: rigid schemas vs. flexible schemas
(schema-less)

= ACID compliance vs. BASE

= |n that sense, NoSQL today is more commonly meant to be
something like “non-relational”

NoSQL Distinguishing Characteristics =~

= lLarge data volumes
= Google’s “big data”
= Scalable replication and distribution

= Potentially thousands of machines

= Potentially distributed around the world
= Queries need to return answers quickly
= Mostly query, few updates
= Asynchronous Inserts & Updates
= Schema-less
= ACID transaction properties are not needed — BASE
= CAP Theorem

= Open source development (most)

Distributed Architecture

= Many NoSQL databases federate a bunch of servers

= Provides
= Redundant storage

= Geographic distribution

= Avoid single point of failure

Server

VVVVVVVVVVVVVVVVVVVVVVV

Server

CAP Theorem - wwweew

A distributed system can support only two of the following
characteristics [Eric Brewer 2000]:

= Consistency:
= All nodes within a cluster see the same data at the same time
= System reliably follows established rules
= Availability
= Node failures do not prevent survivors from continuing to operate
= Every operation must terminate in an intended response
= Partition Tolerance

= The system continues to operate despite arbitrary message loss —
Wikipedia

= Operations will complete, even if individual components are unavailable —
Pritchett

Following CAP Theorem

al Guide to NoSQL Systems

Pick Two

BASE Transactions

= Acronym contrived to be the opposite of ACID

Basically Available,
Soft state,

Eventually Consistent

= Characteristics

Weak consistency — stale data OK
Awvailability first

Approximate answers OK
Aggressive (optimistic)

Simpler and faster

VVVVVVVVVVVVVVVVVVVVVVV

NOSQL db t)lpes VVVVVVVVVVVVVVVVVVVVVVV

= Document Store

= BaseX, Clusterpoint,Apache Couchbase, eXist, Jackrabbit, Lotus Notes and IBM Lotus
Domino LotusScript, MarkLogic Server, MongoDB, OpenLink Virtuoso, OrientDB,
RavenDB, SimpleDB, Terrastore

= Graph

= AllegroGraph, DEX, FlockDB, InfiniteGraph, Neo4j, OpenLink Virtuoso, OrientDB,
Pregel, Sones GraphDB, OWLIM

= Key Value

= BigTable, CDB, Keyspace, LevelDB, membase, MemcacheDB, MongoDB, OpenLink
Virtuoso, Tarantool, Tokyo Cabinet, TreapDB, Tuple space

= Eventually-consistent - Apache Cassandra, Dynamo, Hibari, OpenLink Virtuoso, Project
Voldemort, Riak

= Hierarchical - GT.M, InterSystems Caché

= Tabular — BigTable, Apache Hadoop, Apache Hbase, Hypertable, Mnesia, OpenLink
Virtuoso

= Object Database - db4o, Eloquera, GemStone/S, InterSystems Caché, JADE, NeoDatis
ODB, ObjectDB, Objectivity/DB, ObjectStore, OpenLlnkV|rtuoso Versant Object
Database,Wakanda, ZODB

= Multivalue databases - Extensible Storage Engine (ESE/NT), jBASE, OpenQM,
Openlnsight , Rocket U2, D3 Pick database, InterSystems Caché, InfinityDB

= Tuple store- Apache River, OpenLink Virtuoso, Tarantool

u Key-value

= Graph database

® Document-oriented

® Column store

BTE

Cassandra

?® Neoyj

@ the graph database

. mongoDB

)

)/

H-BASE

Ao

CouchBan

VVVVVVVVVVVVVVVVVVVVVVV

NoSQL Summary

= NoSQL databases reject:

Overhead of ACID transactions
“Complexity” of SQL

Burden of up-front schema design
Declarative query expression

Yesterday’s technology

" Programmer responsible for

Step-by-step procedural language

Navigating access path

VVVVVVVVVVVVVVVVVVVVVVV

20

How Does NoSQL compare to SQL?

While there are numerous characteristics that
differentiate SQL and NOSQL the two most significant
are Scaling and Modeling.

= Scaling — Traditionally SQL does not lend itself to massively parallel
processing, which lead to larger computers (scale up) vs. distribution to
numerous commodity servers, virtual machines or cloud instances (scale
out).

" Modeling — SQL databases are highly normalized and require pre-
defined data models prior to inserting data into the system. In contrast
NOSQL databases do not require (although they support) pre-defined
data model(s).

Relational vs. NoSQL

Relational

= Relational
= Table based
® Predefined schema

® Vertical scalable

= Emphasized on ACID

NoSQL

No-Relational

VVVVVVVVVVVVVVVVVVVVVVV

Document based, key-valued...

Dynamic schema
Horizontally scalable

Follows BASIC transactions

MONGODB

23

What is MongoDB?

= Definition: MongoDB is an open-source document oriented
database that provides high performance, high availability, and
automatic scaling.

" |nstead of storing data in tables and rows as with a
relational database, in MongoDB stores data in JSON-like
documents with dynamic schemas(schema-free).

NoSQL
Database | Document Oriented

Database Mongo DB

24

MongoDB main features

JSON-like
d

mongoDB

OOOOOO ts

VVVVVVVVVVVVVVVVVVVVVVV

25

Data Storage Mechanism

= MongoDB Server
= Database A

= Collection |

= Documentl

= Field
= Key

= Value: string, int, array of values, documents, array of documents
= Documentl

= Field
= Key

= Value

= Collection 2

= Database B

= Collection 3

VVVVVVVVVVVVVVVVVVVVVVV

26

VVVVVVVVVVVVVVVVVVVVVVV

Data types

" Documents in MongoDB can be thought of as “JSON-like” in
that they are conceptually similar to objects in JavaScript.

= JSON is a simple representation of data

® Null: Use to represent both a null value and a nonexistent
field:

= {field : null}
= Boolean: which can be used for the values true and false:
= {field : true}

= String: Any string of characters can be represented using the
string type:
= {field : "foodbar"}

27

VVVVVVVVVVVVVVVVVVVVVVV

Data types (cont’)

= Number:The shell defaults to using 64-bit floating point
numbers. Thus, these numbers look “normal” in the shell:

= {field:3.14} or: {field:3}
= For integers, use the Numberint or NumberlLong classes,

which represent 4-byte or 8-byte signed integers,
respectively.

= {field : Numberint(3)}
= {field : NumberLong(3)}

= Dates: are stored as milliseconds. The time zone is not
stored:

= {field : new Date()}

28

VVVVVVVVVVVVVVVVVVVVVVV

Data types (cont’)

= Array: Sets or lists of values can be represented as arrays:

= {field :["a","b", "c"]}

* Embedded document: Documents can contain entire
documents embedded as values in a parent document:

= {field : {field : "abc"}}

= object id:An object id is a |2-byte ID for documents.
= { id:Objectld()}

29

Concept mapping

RDBMS | |MongoDB

Database
Table,View

Row

Column
Index

Join

Foreign Key

Partition

11111111

Database

Collection

Document (JSON,
BSON)

Field
Index
Embedded Document

Reference
Shard

> db.user.findOne({age:39})

{
" id":

Objectld("51 14e0bd42..."),
"first" : "John",
"last" : "Doe",
"age" : 39,

"interests" : [
"Reading",
"Mountain Biking]
"favorites": {
"color": "Blue”,
"sport": "Soccer"}

VVVVVVVVVVVVVVVVVVVVVVV

30

Documents and Collection

{
name: "sue”, <«—— field: value
age: 26, <+—— field: value
status: "A", <«— field: value
groups: ["news”, "sports”] <e—— field: value
}
{
na {
ag na| {
St agl name: "al”,
gn st age: 18,
} gr status: "D",
} groups: ["politics”, "news”]
}
Collection

VVVVVVVVVVVVVVVVVVVVVVV

31

CRUD

Create

= db.collection.insert(<document>)
= db.collection.save(<document>)

= db.collection.update(<query>, <update>, { upsert: true })
Read

= db.collection.find(<query>, <projection>)

= db.collection.findOne(<query>, <projection>)

Update

= db.collection.update(<query>, <update>, <options>)
Delete

= db.collection.remove(<query>, <justOne>)

31

VVVVVVVVVVVVVVVVVVVVVVV

32

CRUD operations - CREATE

Insert a new user.

SQL
INSERT INTO users <«—— table
(name, age, status) <«—— columns
VALUES ("sue", 26, "A") <«—— values/row
MongoDB
db.users.insert (<«—— collection
{
name: "sue”, <+—— field: value d
age: 26, <«—— field: value ocument
status: "A" <+—— field: value
¥

\
USTH

CRUD operations — CREATE (contd)

groups: ["news"”, "sports"”]

Collection Document
‘ -
db.users.insert(v
name: "sue",
age: 26,
status: "A",
3
)
Document
{
name: "sue”,
age: 26,
status: "A",
groups: ["news”, "sports”]
3

33

insert

—

Collection
{ name: "al”, age: 18, ... }
{ name: "lee", age: 28, ... }
{ name: "jan", age: 21, ... }
{ name: "kai", age: 38, ... }
{ name: "sam", age: 18, ... }
{ name: "mel”, age: 38, ... }
{ name: "ryan”, age: 31, ... }
{ name: "sue", age: 26, ... }

34

CRUD operations - READ

Find the users of age greater than 18 and sort by age.

Collection

{ age:

18, ...

{ age:

28, ...

{ age:

21, ...

{ age:

38, .

{ age:

18, .

{ age:

38,

{ age:

31,

users

ﬁ

Query Criteria

Query Criteria

db.users.find({ age: { $gt: 18 } }).sort({age:

age:

28, ...

age:

21, ...

age:

38, ...

age:

38,

age:

31, ...

ﬁ
Modifier

Modifier

VVVVVVVVVVVVVVVVVVVVVVV

1})

age: 21, ...}
age: 28, ...}
age: 31, ...}
age: 38, ...}
age: 38, ...}
Results

35

READ - Aggregation

= SQL
= SELECT COUNT*)

FROM Restaurants

= GROUP BY borough

= MongoDB

db.restaurants.aggregate(

[

{ $group:{ " _id": "$borough”, "count™: { $sum: | } } }

1)

P R ™ S S S,

" idll
n id"
no4gn
n idll .
] id"
] idll .

¢ "Missing", “count" : 51 }

= 'Staten Island™, "count™ X 989 }
: "Manhattan", "count" : 10259 }

» "Bronx"; "ecount™ : 2338 }

: "Queens", "count" : 5656 }
"Brooklyn", "count" : 6085 }

VVVVVVVVVVVVVVVVVVVVVVV

36

CRUD operations - UPDATE

Update the users of age greater than 18 by setting the status field to A.

SQL

UPDATE users <«—— table

SET status = 'A’ <«—— update action

WHERE age > 18 <—— update criteria
MongoDB

db.users.update(<«—— collection

{ age: { %$gt: 18 } 3}, <+—— update criteria

{ $set: { status: "A" } }, «—— update action

{ multi: true } <—— update option

37

CRUD operations - DELETE

Delete the users with status equal to D.

SQL

DELETE FROM users <«—— table

WHERE status = 'D' <—— delete criteria
MongoDB

db.users.remove(<+—— collection

{ status: "D" } <—— remove criteria

)

VVVVVVVVVVVVVVVVVVVVVVV

MONGODB SHARDING

Ref: Kristina Chodorow, Scaling MongDB Sharding, Cluster Setup, and Administration, 201 |

\
USTH

VIETNAM FRANCE UNIVERSITY

Sharding

id company customer artide currency price
4250250020 073000 5994537812 |00 142,50

= Partition your data 4250251|020 073000 |5994537852|00 141,12
4250252|020 073000 5994537854 |00 105,99

= Scale write throughput 4250253/ 020 073000 | 5994537856 |00 108,52
4250254(020 073000 5994537862 |00 131,49

® |ncrease capacity 4250255020 073000 5994567308 | 00 29,86
4250256 (020 073000 5994567422 |00 57,13

u Auto-balancing 4250257020 073000 5994567428 | 00 68,59
4250258020 073000 5994605089 |00 51,09
4250259020 073000 5994607975 |00 93,93
4250260 020 073000 | 5994701005 |00 74,22

shard, shard,
Hostl:10000 Host2:10010
configdb /

I ost30000 Iy

Common architecture

40

= request —
<«€— response

\
USTH

VIETNAM FRANCE UNIVERSITY

Config Servers

(oo)

______ > | ()

Crm)

Clients
A
|
v
= —
Shard 1 Shard 2 Shard 3
mongod mongod mongod
(PRIMARY) (PRIMARY) (PRIMARY)
rs2
DB: mydb
Collection: zip
mongod mongod mongod mongod
SECONDARY) SECONDARY) (SECONDARY]) || |(SECONDARY
rs1 rsi rs2
DB: mydb DB: mydb DB: mydb
Collection: zip Collection: zip Collection: zip
N——

\
USTH

VVVVVVV FRANCE UNIVERSITY

Shard A

Applications/
Drivers

Reads/Writes —>
Reads/Writes —ip [(TN

42

Terminologies

= Replication
= Replica set:a group of mongod maintaining same data
= Primary: Endpoint for writes
= Secondary: Mirror of Primary
= Election: process to select Primary among mongod

= Arbiter: mongod responsible for election
= Chunk: data partition of a collection split by shard key

= Shard:a Replica Set holding some chunks

VVVVVVVVVVVVVVVVVVVVVVV

Data segmentation by Location

43

Sharded Cluster

Shard 1

Shard ...

North America

Shard N

VVVVVVVVVVVVVVVVVVVVVVV

Shard N+1 Shard N+2

Europe

\
USTH

VIETNAM FRANCE UNIVERSITY

Read global, write local

Primary:LON

- . i - -~
. o 3 . =
o 3

Secondary:NYC

Secondary:SYD

"'w

Primary:NYC

\ Secondary:LON

Secondary:SYD

Primary:SYD

Secondary:LON

Secondary:NYC

44

VVVVVVVVVVVVVVVVVVVVVVV

Replication

Client Application = Replica set:a group of mongod

Driver

instances that maintain the

Writes
same data set

Reads

= Goals:

Pri
= High Availability (HA) through

> G o
N G data duplication
N> e%/;
= Recovery

= Workload isolation: distributed

access with low latency

45

Failover

46

«
USTH'"

VIETNAM FRANCE UNIVERSITY

Read Operations to Replica Sets

Driver

Read with

Read Preference
(default)

Secondary

Data Center |

47

VVVVVVVVVVVVVVVVVVVVVVV

Driver

Read with |Read Preference
(nearest)

Secondary

Data Center 2

Choosing shard key

48

VVVVVVVVVVVVVVVVVVVVVVV

