Data Mining - Clustering

Nhat-Quang Doan

University of Science and Technology of Hanoi

nq.doan@gmail.com

Nhat-Quang Doan

Image: A matrix

표 제 표

Overview

2 Clustering methods

- Hierarchical Clustering
- Density-based Clustering
- Centroid-based Clustering

3 Clustering quality

3 N 3

Introduction

Objectives

- Clustering is the unsupervised learning task of data mining that retrieves information from data and determines the relationship between objects.
- Clustering consists in grouping a set of unlabeled data objects (instances) based on a similarity measure such that objects in the same *cluster* (group) are similar to each other and dissimilar to those in other clusters.

Examples

Introduction

Applications

• Bio-informatics: detecting the cancer patients or finding abnormal genes

• Marketing: partitioning general customers' information.

Introduction

Applications

- Image Segmentation: locating the homogeneous zones in images.
- Text Mining: grouping texts, files, books.
- Social Network: detecting communities within large groups of people.

Introduction

Applications

• Content-Based Information Retrieval: Wang dataset

Image: Image:

æ

- 3 ▶

Introduction

Applications

• Image Segmentation

а

3 N 3

Introduction

Applications

• Recommendation System: Amazon dataset

Fig. 2. Visualization of clustering result for the Cell Phones and Accessories dataset.

Problematics

Difficulties

- Data nature: binary, graph, vector, tree, etc...
- Definition of similarity (or dissimilarity) measure between data objects.
- Clustering algorithms
- Big data
- Evaluation of a clustering result
- Data visualization

Notions

Input set: $\mathcal{X} = \{\mathbf{x}_i\}, \forall i = 1, ..., n$: a set of *n* objects Object: $\mathbf{x}_i \in \mathbb{R}^d$ with $\mathbf{x}_i = (x_{i,1}, x_{i,2}, ..., x_{i,d})$ Cluster: $C_k \in \mathcal{C} = \{C_1, ..., C_K\}, \forall k = 1, ..., K$. The cardinality in each cluster C_k is denoted by n_k . Problem: Each object $\mathbf{x}_i \in \mathcal{X}$ is assigned to a cluster $C_k \in \mathcal{C}$ such that objects in C_k are similar.

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms

Clustering algorithm categories:

- Centroid-based clustering algorithms: K-means, Self-organizing maps (SOM), Neural Gas.
- Hierarchical clustering algorithms: Agglomerative Hierarchical Clustering (AHC), BIRCH, CURE. Clustering tree

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms

Clustering algorithm categories:

- Density-based clustering algorithms: Expectation-Maximization.
- Hybrid clustering algorithms: AntTree, Self-organizing Trees (SoT).

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: Hierarchical Clustering

The principles are as following:

- A tree-based hierarchical taxonomy (dendrogram) is built from a set of objects.
- Each point or cluster is gradually "absorbed" by the nearest cluster.

Introduction Hierarchical Clustering Clustering methods Clustering quality Centroid-based Cluster

Clustering algorithms: Hierarchical Clustering

Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Clustering algorithms: Hierarchical Clustering

• Agglomerative (bottom-up):

- Start with each object being a single cluster.
- Eventually all objects belong to the same cluster.
- Divisive (top-down):
 - Start with all objects belong to the same cluster.
 - Eventually each object forms a cluster.
- Cluster height in the dendrogram corresponds to the similarity (distance) between two clusters before the merge.

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: AHC

Algorithm 1 AHC algorithm

- 1: Each objects $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathcal{X}$ is in its own cluster $C_1, ..., C_N$
- 2: repeat
- 3: merge the nearest clusters involving C_i and C_j
- 4: until only one cluster is left

< □ > < 凸

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: AHC

The nearest clusters can be variously defined as:

• Single-linkage: the link between two clusters is made by a single pair of objects that are closest to each other.

$$d(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{x}' \in C_j} d(\mathbf{x}, \mathbf{x}')$$

• Complete-linkage: the distance between clusters is equal to the distance between those two objects that are farthest away from each other.

$$d(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{x}' \in C_j} d(\mathbf{x}, \mathbf{x}')$$

• And the other distances can be employed.

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: AHC

Example

æ

イロト イヨト イヨト イヨト

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: AHC

Example

æ

イロト イヨト イヨト イヨト

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: AHC

Example

イロト イヨト イヨト イヨト

æ

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: AHC

Example

æ

< □ > < 同 > < 回 > < 回 > < 回 >

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: AHC

Advantages

- does not require any input parameters in advance.
- simple visualization and easy comparison in similarity between objects.

Drawbacks

- high complexity $O(n^2)$ or $O(n^3)$.
- sensible to noisy.
- does not scale well, check all the number of data before splitting.

Introduction Hierard Clustering methods Clustering quality Centro

Density-based Clustering Centroid-based Clustering

Clustering algorithms: DBSCAN

Density-Based Spatial Clustering of Application with Noise groups points that are closely packed together (many nearby neighbors).

- If an object **x**_i is **density connect** to **x**_j, then **x**_i and **x**_j belong to the same cluster.
- If an object **x**_i is **not density connect** to any other object, **x**_i is considered as noise.

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: DBSCAN

- *ϵ*-neighborhood: The *ϵ*-neighborhood of an object p is the set
 of object within *ϵ*-distance of x_i
 *x*_i
- core object: An object x_i is a core object if and only if there are at least minPts objects within the radius of ε.
- noise object: An object x_i is not core object then it is a noise object.

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: DBSCAN

Sample for different defined objects in DBSCAN

Image: A matrix

э

- 3 ▶

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: DBSCAN

- Classify objects as noise or core
- 2 Eliminate noise objects
- O Perform clustering on the core objects
 - 1: current_Cluster_Label \leftarrow 1
 - 2: for all core objects do
 - 3: **if** the core object \mathbf{x}_i has no cluster label **then**
 - $\texttt{4:} \qquad \texttt{current_Cluster_Label} \leftarrow \texttt{current_Cluster_Label} + 1$
 - 5: end if
 - 6: **for** all objects \mathbf{x}_i in the radius of ϵ , except \mathbf{x}_i **do**
 - 7: **if** the core object \mathbf{x}_j has no cluster label **then**
 - Label the object with cluster label current_Cluster_Label
 - 9: end if
 - 10: end for
 - 11: end for

8:

< 1 k

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: K-means

The principles are as following:

- Given that K centroids W = {w₁, .., wκ} are known, an object x_i, ∀i = 1, .., n is assigned to the nearest centroid to minimize the quantization error.
- Once all the input objects have been assigned, for each cluster C_k, ∀k = 1, ..., K, we estimate the new centroid w_k.
- These steps are repeated until the centroids are convergent.

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: K-means

Algorithm 2 K-means algorithm

- 1: initialize randomly K prototypes / weight vectors
- 2: repeat
- 3: **for** i = 1 **to** n **do**

4:
$$k = \arg\min_{k=1,..,K} \|\mathbf{x}_i - \mathbf{w}_k\|^2$$

5:
$$C_k = C_k \cup \mathbf{x}_i$$
 {assign \mathbf{x}_i to cluster C_k }

6: end for

7: for
$$k = 1$$
 to K do

8: $\mathbf{w}_k = \frac{1}{n_k} \sum_{j=1}^{n_{C_k}} \mathbf{x}_j$ {update prototype k, where n_k is the cardinality of cluster C_k }

9: end for

10: until stopping criterion has been fulfilled

Introduction Hierarch Clustering methods Clustering quality Centroid

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: K-means

Image: A matched black

æ

-∢ ∃ ▶

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: K-means

(c) *K* = 4

(d) K = 5

<ロト < 四ト < 三ト < 三ト

э

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: K-means

1000 data and 5 clusters

ヨト イヨト

æ

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: K-means

10000 data and 10 clusters

æ

∃ ► < ∃ ►

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: K-means

Advantages:

- Simple algorithm and easy implementation.
- Low complexity $\theta(Knt)$ (t is the number of iterations).

Drawbacks:

- This algorithm depends greatly on the initialization:
 - *K* must be defined a priori. Which value is the best for a specific data set?
 - w_k is randomly generated in the input space, it converges to the local minimum. How to initialize centroids to obtain better result?

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: K-means

To obtain a *stable* clustering result:

- Vary the values of K.
- Run the algorithm many times with random initialization of prototypes.

 \rightarrow Group all the objects that are found together in the same cluster.

K-means variants:

- K-medians
- Self-organizing map
- Neural Network
- etc...

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: Self-organizing Map

Introduction

- Introduce by Prof. Teuvo Kohonen in 1982
- Unsupervised neural network based on K-means
- Visualization tool for high-dimensional and complex data

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: Self-organizing Map

The idea:

- Cover the input data distribution by a topology map
- Similar data in a cluster is represented by map nodes (neurons)

Clustering methods Centroid-based Clustering Clustering quality Clustering algorithms: Self-organizing Map 2D output K neurons lattice \vec{x}_1 Input layer Weights matrix \vec{x}_2 Neuron i $\vec{w}_i = [w_{i1}, w_{i2}, \dots, w_{im}]$ $\vec{x}_n = [x_{n1}, x_{n2}, \dots, x_{nm}]$

< □ > < 同 > < 回 > < 回 > < 回 >

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: Self-organizing Map

Four steps like K-means:

- Initialization: define the map topology, neurons etc...
- Assignment: assign data to the best match units (prototype)
- Update: recompute the new prototypes
- Convergence: repeat the above steps until the stopping criteria have been fulfilled

Clustering algorithms: Self-organizing Map

SOM initialization: definition of map structure

- 1-dimensional, 2-dimensional or 3-dimensional map,
- size of the map (number of neurons),
- map topology or shape: rectangle or hexa,
- a map node (neuron) associated with a weight vector (prototype),
- neighbor nodes are linked by topological links.

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: Self-organizing Map

best match unit

- 3 ▶

< □ > < 凸

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: Self-organizing Map

Update: "Winner-take-most" rule for adjusting the prototypes

• w₀ is the best match unit of the current x_i assigned to w₀

•
$$\mathbf{w}_0 = \mathbf{w}_0 + \alpha (\mathbf{x}_i - \mathbf{w}_0)$$

 for all nodes w_r, the neighbors of w₀, w_r = w_r + β(x_i - w₀) where α, β are converging constants (α > β) or neighborhood functions (kernel functions)

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: Self-organizing Map

Advantages:

- Reduction of dimensionality to visualize data in a low dimensional space.
- Capable of clustering large, complex data sets.
- Neighborhood functions help the algorithm convergence.

Hierarchical Clustering Density-based Clustering Centroid-based Clustering

Clustering algorithms: Self-organizing Map

Advantages:

- Reduction of dimensionality to visualize data in a low dimensional space.
- Capable of clustering large, complex data sets.
- Neighborhood functions help the algorithm convergence.

Variants:

- Neural Gas
- Growing Neural Gas
- etc...

Clustering evaluation

Each cluster C_k is associated with:

- a centroid (prototype): $\mathbf{w}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{x}_i$
- intra-class variance (quantization error): $error = \sum_{i=1}^{n_k} d(\mathbf{x}_i, \mathbf{w}_k)$
- inter-class variance: $error = \sum_{k=1}^{K} \sum_{l \neq k; l=1}^{K} \sum_{j=1}^{n_l} d(\mathbf{x}_i, \mathbf{w}_k)$

Internal validation:

• Davies-Bouldin index measures the correlation between two clusters:

$$DB = rac{1}{N} \sum_{i=1}^{K} \max_{j,i
eq j} rac{\mu_i + \mu_j}{d(\mathbf{w}_i,\mathbf{w}_j)}$$

where
$$\mu_i = rac{1}{n_i} \sum_{j=1}^{n_i} d(\mathbf{w}_i, \mathbf{x}_j)$$

• Dunn index measures dense and well-separated clusters:

$$Dunn = \min_{i=1,..,K} (\min_{j=1,..,K; i \neq j} (\frac{d(\mathbf{w}_i, \mathbf{w}_j)}{\max_{l=1,..,K} \Delta(l)}))$$

where $\Delta(l)$ measures the intra-cluster distance of cluster l

イロト イポト イヨト イヨト

Clustering methods group these objects into K clusters, thus two partitions to compare are defined: $C = \{C_1, ..., C_K\}$ is a random variable for data cluster assignments $\mathcal{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$, and $Y = \{y_1, ..., y_N\}$, where $y_l \in \mathcal{B} = \{B_1, ..., B_L\}$ is a variable for the original labels.

$\mathcal{B} ackslash \mathcal{C}$	C_1	<i>C</i> ₂	•••	C_k	• • •	C _K	Sum
B_1	<i>n</i> ₁₁	<i>n</i> ₁₂	• • •	n_{1k}	•••	n _{1K}	n_{B_1}
B_2	n ₂₁	<i>n</i> ₂₂	•••	<i>n</i> _{2<i>k</i>}	•••	n _{2K}	n_{B_2}
÷	÷	÷	·	÷	·	÷	÷
B_l	n_{l1}	<i>n</i> ₁₂	• • •	n _{lk}	• • •	n _{IK}	n _{Bi}
÷	÷	÷	•••	÷	·	÷	÷
BL	n _{L1}	n _{L2}	• • •	n _{Lk}	•••	n _{LK}	n _{BL}
Sum	n_{C_1}	n_{C_2}		n_{C_k}		n _{CK}	N

イロト イヨト イヨト ・

External validation:

• Accuracy reflects the proportion of objects that were correctly assigned:

$$Acc = \frac{1}{N} \sum_{k=1}^{K} \max_{l=1,..,L} (n_{lk})$$

• Mutual Information measures how much information is shared between a clustering and a ground-truth classification:

$$MI = \sum_{l=1}^{L} \sum_{k=1}^{K} n_{lk} \log_2(\frac{Nn_{lk}}{n_{B_l}n_{C_k}})$$

• Normalized Mutual Information:

$$NMI = \frac{MI}{\sqrt{\left(\sum_{l=1}^{L} n_{B_l} \log_2\left(\frac{n_{B_l}}{N}\right)\right)\left(\sum_{k=1}^{K} n_{C_k} \log_2\left(\frac{n_{C_k}}{N}\right)\right)}}$$

-∢ ∃ ▶

External validation:

- Rand index computes how similar the obtained clusters are to the benchmark classifications: $Rand = \frac{N_{00} + N_{11}}{N_{00} + N_{01} + N_{10} + N_{11}}$
- Jaccard index is used to quantify the similarity between two partitions: $Jaccard = \frac{N_{11}}{N_{00} + N_{10} + N_{01}}$

where

 N_{11} is the number of data pairs in the same cluster in both $\mathcal B$ and $\mathcal C$;

 N_{10} is the number of data pairs in the same cluster in \mathcal{B} but not \mathcal{C} ; N_{01} is the number of data pairs in the same cluster in \mathcal{C} but not \mathcal{B} ; N_{00} is the number of data pairs in different clusters in both \mathcal{B} and \mathcal{C} .

Example: 10 objects $\in \mathcal{X}$ having the original labels $Y = \{1, 1, 1, 1, 2, 2, 2, 2, 2, 2\}$ are clustered into 3 clusters, $Y_{new} = \{1, 1, 1, 2, 2, 2, 3, 3, 3, 3\}$. We have: • $B_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ and $B_2 = \{\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8, \mathbf{x}_9, \mathbf{x}_{10}\}$ • $C_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$, $C_2 = \{\mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6\}$ and $C_3 = \{\mathbf{x}_7, \mathbf{x}_8, \mathbf{x}_9, \mathbf{x}_{10}\}$

$\mathcal{B}ackslash\mathcal{C}$	C_1	C_2	C_3	Sum
B_1	3	1	0	4
B_2	0	2	4	6
Sum	3	3	4	10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathcal{B} \setminus \mathcal{C}$	C_1	C_2	<i>C</i> ₃	Sum
B_1	3	1	0	4
B_2	0	2	4	6
Sum	3	3	4	10

- Accuracy: $Acc = \frac{1}{N} \sum_{k=1}^{K} \max_{l=1,...,L}(n_{lk}) = \frac{1}{10} \sum_{k=1}^{3} \max((3,0), (1,2), (0,4)) = \frac{3+2+4}{10} = 0.9$
- Mutual Information: $MI = \sum_{l=1}^{L} \sum_{k=1}^{K} n_{lk} \log_2(\frac{Nn_{lk}}{n_{B_l}n_{C_k}}) = 3\log_2(\frac{10*3}{3*4}) + 1\log_2(\frac{10*1}{3*4}) + 2\log_2(\frac{10*2}{3*6}) + 4\log_2(\frac{10*4}{4*6}) =$

(日)

$\mathcal{B} \setminus \mathcal{C}$	C_1	C_2	<i>C</i> ₃	Sum
B_1	3	1	0	4
B_2	0	2	4	6
Sum	3	3	4	10

• Accuracy:
$$Acc = \frac{1}{N} \sum_{k=1}^{K} \max_{l=1,..,L}(n_{lk}) = \frac{1}{10} \sum_{k=1}^{3} \max((3,0), (1,2), (0,4)) = \frac{3+2+4}{10} = 0.9$$

• Mutual Information: $MI = \sum_{l=1}^{L} \sum_{k=1}^{K} n_{lk} \log_2(\frac{Nn_{lk}}{n_{B_l}n_{C_k}}) = 3\log_2(\frac{10*3}{3*4}) + 1\log_2(\frac{10*1}{3*4}) + 2\log_2(\frac{10*2}{3*6}) + 4\log_2(\frac{10*4}{4*6}) = 6.954$

• Normalized Mutual Information:

$$\frac{MI}{\sqrt{(\sum_{l=1}^{L} n_{B_l} \log_2(\frac{n_{B_l}}{N}))(\sum_{k=1}^{K} n_{C_k} \log_2(\frac{n_{C_k}}{N}))}}{\frac{MI}{\sqrt{(3\log_2(\frac{3}{10}) + 3\log_2(\frac{3}{10}) + 4\log_2(\frac{4}{10}))(4\log_2(\frac{4}{10}) + 6\log_2(\frac{6}{10}))}}} =$$

э

$\mathcal{B} ackslash \mathcal{C}$	C_1	C_2	<i>C</i> ₃	Sum
B_1	3	1	0	4
B_2	0	2	4	6
Sum	3	3	4	10

• Accuracy:
$$Acc = \frac{1}{N} \sum_{k=1}^{K} \max_{l=1,..,L}(n_{lk}) = \frac{1}{10} \sum_{k=1}^{3} \max((3,0), (1,2), (0,4)) = \frac{3+2+4}{10} = 0.9$$

• Mutual Information: $MI = \sum_{l=1}^{L} \sum_{k=1}^{K} n_{lk} \log_2(\frac{Nn_{lk}}{n_{B_l}n_{C_k}}) = 3\log_2(\frac{10*3}{3*4}) + 1\log_2(\frac{10*1}{3*4}) + 2\log_2(\frac{10*2}{3*6}) + 4\log_2(\frac{10*4}{4*6}) = 6.954$

• Normalized Mutual Information:

$$\frac{NMI}{\sqrt{\left(\sum_{l=1}^{L} n_{B_l} \log_2\left(\frac{n_{B_l}}{N}\right)\right)\left(\sum_{k=1}^{K} n_{C_k} \log_2\left(\frac{n_{C_k}}{N}\right)\right)}}{\frac{MI}{\sqrt{(3\log_2\left(\frac{3}{10}\right) + 3\log_2\left(\frac{3}{10}\right) + 4\log_2\left(\frac{4}{10}\right))(4\log_2\left(\frac{4}{10}\right) + 6\log_2\left(\frac{6}{10}\right))}}} = \frac{6.954}{\sqrt{152.531}} = 0.563$$

イロト イポト イヨト イヨト

э

•
$$B_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$$
 and $B_2 = \{\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8, \mathbf{x}_9, \mathbf{x}_{10}\}$
• $C_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}, C_2 = \{\mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6\}$ and $C_3 = \{\mathbf{x}_7, \mathbf{x}_8, \mathbf{x}_9, \mathbf{x}_{10}\}$
 $\rightarrow N_{00} = 22, N_{11} = 10, N_{10} = 11$ and $N_{01} = 2$
• Rand index: $Rand = \frac{N_{00} + N_{11}}{\frac{N}{2}} = \frac{22 + 10}{22 + 10 + 11 + 2} = \frac{32}{45} = 0.711$
• Jaccard index:

$$Jaccard = \frac{N_{11}}{N_{11} + N_{10} + N_{01}} = \frac{10}{10 + 11 + 2} = \frac{10}{23} = 0.434$$

æ

イロト イヨト イヨト イヨト

Conclusion

- Clustering: unsupervised learning.
- Grouping the homogeneous objects into clusters (low intra-class variance and high inter-class variance).
- It exists many criteria to evaluate a clustering (internal and external validation).
- Algorithms are rich: AHC, K-means, EM et many mores.