

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn University of Science and Technology of Hanoi ICT department

Doan Nhat Quang

1 / 36

문 🛌 🖻

Definition

In mathematics, an algebraic structure consists of a non-empty set A, a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy.

Groups, Rings, Fields

Lattice, Module

Group Applications

Group Permutation: https://ruwix.com/the-rubiks-cube/ mathematics-of-the-rubiks-cube-permutation-group/ Ring and Fields: Define more advanced algebraic structures

Group Theory

Chromatic circle in music theory: the twelve equal-tempered pitch classes can be represented by the cyclic group of order twelve, or, equivalently, the residue classes modulo twelve.

etc.

Coding Theory

- Error Correcting Code: a simple example is to transmit each data bit 3 times
- Hamming Distance
- Information theory: Manchester code
- Crystallography (Chemistry): Symmetry groups consist of symmetries of given mathematical objects, principally geometric entities.
- and more.....

Binary Operations

Binary operations

$$\star: S \times S \to S, (a, b) \to a \star b$$

A map is called a binary operation on S. So \star takes 2 inputs a, b from S and produces a single output $a \star b \in S$.

Properties

Let \star be a binary operation on a set *S*. There exists several properties:

▶ \star is commutative if, $\forall a, b \in S$

$$a \star b = b \star a$$

•
$$\star$$
 is associative if, $\forall a, b, c \in S$

$$(a \star b) \star c = a \star (b \star c)$$

Doan Nhat Quang

Addition, +, is a commutative and associative binary operation in $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, M \in \mathbb{R}^{m \times n}$

э

▶ ∢ ∃ ▶

Addition, +, is a commutative and associative binary operation in $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, M \in \mathbb{R}^{m \times n}$

Example 2

Is Addition, +, a commutative and associative binary operation in $\mathcal{S}=\{0,1\}?$

- ▲ 臣 ▶ - 臣 臣

Addition, +, is a commutative and associative binary operation in $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, M \in \mathbb{R}^{m \times n}$

Example 2

Is Addition, +, a commutative and associative binary operation in $\mathcal{S}=\{0,1\}?$

Example 3

Is Subtraction, -, is a commutative and associative binary operation in $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}?$

Multiplication, ., is a commutative and associative binary operation in $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ but not $M \in \mathbb{R}^{m \times n}$

Multiplication, ., is a commutative and associative binary operation in $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ but not $M \in \mathbb{R}^{m \times n}$

Example 5

Scalar product on \mathbb{R}^2 is given by $(a_1, a_2).(b_1, b_2) = a_1b_1 + a_2b_2$. Is it binary operation and commutative or associative?

Multiplication, ., is a commutative and associative binary operation in $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ but not $M \in \mathbb{R}^{m \times n}$

Example 5

Scalar product on \mathbb{R}^2 is given by $(a_1, a_2).(b_1, b_2) = a_1b_1 + a_2b_2$. Is it binary operation and commutative or associative?

Example 6

Vector product on \mathbb{R}^2 is given by $(a_1, a_2).(b_1, b_2) = (a_1b_1, a_2b_2).$ Is it binary operation and commutative or associative?

Groups

Definition 1

Let G be a non-empty set and let \star be a binary operation on G:

$$\star: G \times G \rightarrow G, (a, b) \rightarrow a \star b$$

Then $(G; \star)$ is a group if the following axioms are satisfied:

- ▶ G1 associative: $\forall a, b, c \in G$, $(a \star b) \star c = a \star (b \star c)$
- ► G2 **identity element:** there exists $e \in G$ such that $a \star e = e \star a = a, \forall a \in G$
- ▶ G3 inverse element: for any $a \in G$, there exists a^{-1} such that $a \star a^{-1} = a^{-1} \star a = e$

 $(G; \star)$ is called an abelian group, or simply a *commutative group if* $\forall a, b \in G, a \star b = b \star a$

$(\mathbb{Z},+)$

- G1 + is associative: $\forall a, b, c \in \mathbb{Z}$, (a+b) + c = a + (b+c)
- ▶ G2 0 is identity element: $a + 0 = 0 + a = a, \forall a \in \mathbb{Z}$
- G3 inverse element: for any a ∈ Z, there exists -a such that a + (-a) = (-a) + a = 0

• G4 - + is commutative $\forall a, b \in \mathbb{Z}, a + b = b + a$

Same for $(\mathbb{Z}, +)$, all $(\mathbb{R}, +)$, $(\mathbb{Q}, +)$, and $(\mathbb{C}, +)$.

Example 3

(Z, .), (R, .), (Q, .), and (C, .) are abelian groups?

3

We use $\mathbb{M}_2(\mathbb{R})$ to denote the set of all 2×2 matrices.

- $(\mathbb{M}_2(\mathbb{R}), +)$ is an abelian group?
- $(\mathbb{M}_2(\mathbb{R}), .)$ is an abelian group?

Groups

Proposition 1

The **identity element** in a group G is unique; that is, there exists only one element $e \in G$ such that $e \star g = g \star e = g$, $\forall g \in G$.

Groups

Proposition 1

The **identity element** in a group G is unique; that is, there exists only one element $e \in G$ such that $e \star g = g \star e = g$, $\forall g \in G$.

Proof

if e is not unique, we suppose to have another identity element e' then we have both:

$$e \star g = g \star e = g$$
 and $e' \star g = g \star e' = g$

SO

- if e is identity element then $e \star e' = e'$
- ▶ if e' is identity element then $e' \star e = e$
- G is a group then $e = e \star e' = e' \star e = e'$ (Q.E.D.)

If g is any element in a group G, then the inverse of g, g', is unique.

- (日)

э

∃ ► < ∃ ►

If g is any element in a group G, then the inverse of g, g', is unique.

Proof

if the inverse of g is not unique, we suppose to have g' and g'' are inverses of g:

$$g \star g' = g' \star g = e$$
 and $g \star g'' = g'' \star g = e$

but we have associative property in G, thus:

$$g' = g' \star e = g' \star (g \star g'') = (g' \star g) \star g'' = e \star g'' = g''$$

Let G be a group. If $a, b \in G$, then $(a \star b)^{-1} = b^{-1} \star a^{-1}$

э

Let
$$G$$
 be a group. If $a,b\in G$, then $(a\star b)^{-1}=b^{-1}\star a^{-1}$

Proof

We have

$$a \star b \star b^{-1} \star a^{-1} = a \star e \star a^{-1} = a \star a^{-1} = e$$

Similarly, we have

$$(a \star b) \star (a \star b)^{-1} = e$$

Due to Proposition 2, inverse is unique

$$(a \star b)^{-1} = b^{-1} \star a^{-1}$$

Let x be an element of a group G , then $x^{m+n} = x^m \star x^n$ for all integers m, n. We also define $x^0 = e$. We denote here $x^n = x \star x \star \dots \star x$ (n times).

Let x be an element of a group G , then $x^{m+n} = x^m \star x^n$ for all integers m, n. We also define $x^0 = e$. We denote here $x^n = x \star x \star \dots \star x$ (n times).

Proof

Hint: Use induction

э

- 4 ∃ ▶

Definition 2

The order of an algebraic structure (G, \star) is the cardinality of its underlying set, and is denoted |G|.

For a finite set G, the order of (G, \star) is the number of elements in G.

For a finite set G, the order of (G, \star) is the smallest integer number such that $a^m = e, \forall a \in G$.

Let g be an element of a group G, we say that g has finite order if $g^n = e \ (o(g) = |g| = n)$ for some positive integer n.

Otherwise, if g is said to have the infinite order, $o(g) = \infty$

Definition 1

Let G be a group, a subset H of G is a **subgroup** if and only if it satisfies the following conditions:

- the identity e of G is in H
- if $h_1, h_2 \in H$ then $h_1 \star h_2 \in H$ as well
- ▶ if $h \in H$ then $h^{-1} \in H$

- A subgroup H of G is said to be proper if $H \neq G$.
- The subgroup H = {e} of a group G is called the trivial subgroup.

Let H and K be subgroups of a group G, then $H \cap K$ is also a subgroup of G.

Proof

- ▶ *H* and *K* must have the same identity from *G*, then the identity element belong to $H \cap K$.
- if x and y are elements of H ∩ K then x ★ y is an element of H since x and y are elements of H. Same goes for x ★ y ∈ K. Thus, x ★ y ∈ H ∩ K
- Same proof for the inverse x^{-1} of an element as required.

The group of integers is a subgroup of the groups of rational numbers, real numbers and complex numbers under addition.

The group of integers is a subgroup of the groups of rational numbers, real numbers and complex numbers under addition.

Example 2

Consider the set of non-zero real numbers, \mathbb{R}^* , with the group operation of multiplication. The identity of this group is 1 and the inverse of any element $a \in \mathbb{R}^*$ is just 1/a. \mathbb{Q}^* is a subgroup of \mathbb{R}^* .

- the identity of \mathbb{Q}^* is $1/1 = 1 \in \mathbb{R}^*$
- let 2 numbers q/r and $s/t \in \mathbb{Q}^*$, then $q/r.s/t \in \mathbb{Q}^*$
- ▶ the inverse of q/r is $(q/r)^{-1} = r/q \in \mathbb{Q}^*$

The group of all 2×2 matrices of real numbers with determinant equal to 1 is a subgroup of the group of all 2×2 matrices of real numbers with non-zero determinant under the operation of matrix multiplication.

The group of all 2×2 matrices of real numbers with determinant equal to 1 is a subgroup of the group of all 2×2 matrices of real numbers with non-zero determinant under the operation of matrix multiplication.

Example 4

Let $H = \{-1, 1, i, -i\}$ is a subgroup of \mathbb{C} under multiplication.

Definition 1

The order of a group G, denoted by |G|, is the cardinality of G, that is the number of elements in G.

Definition 2

A group G is said to be cyclic, with generator g, if every element of G is of the form $g^n = g \star g \star ... \star g$ for some integer n. We often denote $G = \langle g \rangle$ or (g)

The group $\mathbb Z$ of integers under addition is a cyclic group, generated by 1 and -1.

-∢ ∃ ▶

The group $\mathbb Z$ of integers under addition is a cyclic group, generated by 1 and -1.

Example 2

Let n be a positive integer. The set \mathbb{Z}_n of integers modulo n is a cyclic group of order n with respect to the operation of addition.

$$\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$$

For example:

$$\mathbb{Z}_9 = \{0, 1, 2, ..., 8\}$$

Let a subgroup $U_9 \in \mathbb{Z}_9$ with $U_9 = \{1, 2, 4, 5, 7, 8\}$ is a cyclic group under multiplication. Every member of this set is generated by 2.

$$2^{1} = 2 \pmod{9}, 2^{2} = 4 \pmod{9}$$

 $2^{3} = 8 \pmod{9}, 2^{4} = 7 \pmod{9}$
 $2^{5} = 5 \pmod{9}, 2^{6} = 1 \pmod{9}$

Every cyclic group is abelian.

Proof

Let G be a cyclic group and $a \in G$ be a generator for G. If $g, h \in G$, then they can written as powers of a, denoted by $g = a^m$ and $h = a^n$ If G is abelian thus, $g \star h = h \star g$. We have here:

$$g \star h = a^m \star a^n = a^{m+n} = a^{n+m} = a^n \star a^m = h \star g$$

Definition 1

Let *H* be a subgroup of a group *G*. A **left coset** of *H* in *G* is a subset of *G* that is of the form $x \star H$, where $x \in G$ and

$$x \star H = \{y \in G : y = x \star h \text{ for some } h \in H\}$$

Definition 2

Similarly, a **right coset** of *H* in *G* is a subset of *G* that is of the form $H \star x$, where $x \in G$ and

$$H \star x = \{ y \in G : y = h \star x \text{ for some } h \in H \}$$

Let H be a subgroup of \mathbb{Z}_6 consisting of elements 0 and 3 or $H=\{0,3\},$ the cosets are:

$$0 + H = 3 + H = \{0, 3\}$$
$$1 + H = 4 + H = \{1, 4\}$$
$$2 + H = 5 + H = \{2, 5\}$$

Definition 3

The index of a subgroup H in G is the number of right (left) cosets. It is a positive number or ∞ and is denoted by [G : H].

Example 1

Let H be a subgroup \mathbb{Z}_6 consisting of elements 0 and 3 or $H=\{0,3\},$ the cosets are:

$$0 + H = 3 + H = \{0, 3\}$$

$$1 + H = 4 + H = \{1, 4\}$$
$$2 + H = 5 + H = \{2, 5\}$$

The index of H is 3.

Let H be a subgroup of a group G. Then each left coset of H in G has the same number of elements as H.

э

3 1 4 3 1

Let H be a subgroup of a group G. Then each left coset of H in G has the same number of elements as H.

Proof

Let $H = \{h_1, h_2, ..., h_m\}$ where $h_1, h_2, ..., h_m$ are distinct. Let x be element in G, then the left coset is $x \star H$. We suppose to have $x \star h_i = x \star h_j \in x \star H$ where i, j are integers from 1 to m, and we expect that $h_i \neq h_j$. But

$$h_i = x^{-1} \star x \star h_i = x^{-1} \star x \star h_j = h_j$$

Thus i = j so $x \star H$ have distinct elements.

Let H be a subgroup of a group G. The number of left cosets of H in G is the same as the number of right cosets of H in G.

∃ ► < ∃ ►

Let H be a subgroup of a group G. The number of left cosets of H in G is the same as the number of right cosets of H in G.

Proof

Let r be exactly different left cosets of H in G, thus we have the left cosets:

$$g_1 \star H, g_2 \star H, ..., g_r \star H : g_1, g_2, ..., g_r \in G$$

 $\begin{array}{ccc} x \in H \star g_i^{-1} & \text{Proposition 1} \\ \Leftrightarrow & x \star (g_i^{-1})^{-1} \in H \star g_i^{-1} \star (g_i^{-1})^{-1} \\ \Leftrightarrow & x \star g_i \in H \star e \\ \Leftrightarrow & (x^{-1})^{-1} \star g_i \in H \\ \Leftrightarrow & x^{-1} \in g_i \star H \end{array}$

Cosets

Proposition 3

Let H be subgroups of a group G, then the left cosets of H in G have the following properties:

• $x \in x \star H$, for all $x \in G$

If x and y are elements of G, and if y = x ★ g for some g ∈ H then x ★ h = y ★ h

Cosets

Proposition 3

Let H be subgroups of a group G, then the left cosets of H in G have the following properties:

• $x \in x \star H$, for all $x \in G$

If x and y are elements of G, and if y = x ★ g for some g ∈ H then x ★ h = y ★ h

Proof

Let x ∈ G, then x = x ★ e where e is the identity element of G and e ∈ H, thus x ∈ x ★ H (according to the subgroup definition)

Let x and y be elements of G, where y = x ★ g for some g ∈ H, then y ★ h = x ★ g ★ h and x ★ h = y ★ (g⁻¹) ★ h for all h ∈ H. Moreover g ★ h ∈ H, thus y ★ H ⊂ x ★ H and g⁻¹ ★ h ∈ H thus x ★ H ⊂ y ★ H ⇐⇒ x ★ H = y ★ H.

Theorem

Let G be a finite group and H be a subgroup of G, then |H|divides |G| where |H| and |G| are orders of H and G respectively. or $[G:H] = \frac{G}{H}$ where [G:H] is the index of H in G.

Proof

- Each element of G belongs to at least one left coset of H in G, and no element can belong to two distinct left cosets of H in G. (Lemma 1)
- Therefore every element of G belongs to exactly one left coset of H. Moreover each left coset of H contains |H| elements (Lemma 2).
- ► Therefore |G| = n|H|, where n is the number of left cosets of H in G. The result follows.

Definition

A subgroup H of a group G is normal in G if $g \star H = H \star g$ for all $g \in G$.

A normal subgroup of a group G is one in which the right and left cosets are precisely the same.

Let G be an abelian group. Every subgroup H of G is a normal subgroup. Since $g \star h = h \star g$ for all $g \in G$ and $h \in H$, it will always be the case that $g \star H = H \star g$.