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Algebraic Structure

Definition

In mathematics, an algebraic structure consists of a non-empty set
A, a collection of operations on A (typically binary operations such
as addition and multiplication), and a finite set of identities, known
as axioms, that these operations must satisfy.

▶ Groups, Rings, Fields

▶ Lattice, Module

Doan Nhat Quang Groups 2 / 36



Group Applications

Group Permutation: https://ruwix.com/the-rubiks-cube/
mathematics-of-the-rubiks-cube-permutation-group/
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Group Applications

▶ Ring and Fields: Define more advanced algebraic structures

▶ Group Theory

▶ Chromatic circle in music theory: the twelve equal-tempered
pitch classes can be represented by the cyclic group of order
twelve, or, equivalently, the residue classes modulo twelve.

▶ etc.
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Group Applications

▶ Coding Theory
▶ Error Correcting Code: a simple example is to transmit each

data bit 3 times
▶ Hamming Distance

▶ Information theory: Manchester code

▶ Crystallography (Chemistry): Symmetry groups consist of
symmetries of given mathematical objects, principally
geometric entities.

▶ and more.....
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Binary Operations

Binary operations

⋆ : S × S → S , (a, b) → a ⋆ b

A map is called a binary operation on S . So ⋆ takes 2 inputs a, b
from S and produces a single output a ⋆ b ∈ S .

Properties

Let ⋆ be a binary operation on a set S . There exists several
properties:

▶ ⋆ is commutative if, ∀a, b ∈ S

a ⋆ b = b ⋆ a

▶ ⋆ is associative if, ∀a, b, c ∈ S

(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)
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Binary Operations

Example 1

Addition, +, is a commutative and associative binary operation in
N,Z,Q,R,C,M ∈ Rm×n

Example 2

Is Addition, +, a commutative and associative binary operation in
S = {0, 1}?

Example 3

Is Subtraction, -, is a commutative and associative binary
operation in N,Z,Q,R,C?
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Binary Operations

Example 4

Multiplication, ., is a commutative and associative binary operation
in N,Z,Q,R,C but not M ∈ Rm×n

Example 5

Scalar product on R2 is given by (a1, a2).(b1, b2) = a1b1 + a2b2. Is
it binary operation and commutative or associative?

Example 6

Vector product on R2 is given by (a1, a2).(b1, b2) = (a1b1, a2b2).
Is it binary operation and commutative or associative?
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Groups

Definition 1

Let G be a non-empty set and let ⋆ be a binary operation on G :

⋆ : G × G → G , (a, b) → a ⋆ b

Then (G ; ⋆) is a group if the following axioms are satisfied:

▶ G1 - associative: ∀a, b, c ∈ G , (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)

▶ G2 - identity element: there exists e ∈ G such that
a ⋆ e = e ⋆ a = a, ∀a ∈ G

▶ G3 - inverse element: for any a ∈ G , there exists a−1 such
that a ⋆ a−1 = a−1 ⋆ a = e

(G ; ⋆) is called an abelian group, or simply a commutative group if
∀a, b ∈ G , a ⋆ b = b ⋆ a
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Groups

Example 1

(Z,+)

▶ G1 - + is associative: ∀a, b, c ∈ Z, (a+ b) + c = a+ (b + c)

▶ G2 - 0 is identity element: a+ 0 = 0 + a = a,∀a ∈ Z
▶ G3 - inverse element: for any a ∈ Z, there exists −a such

that a+ (−a) = (−a) + a = 0

▶ G4 - + is commutative ∀a, b ∈ Z, a+ b = b + a
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Groups

Example 2

Same for (Z,+), all (R,+), (Q,+), and (C,+).

Example 3

(Z, .), (R, .), (Q, .), and (C, .) are abelian groups?
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Groups

Example 4

We use M2(R) to denote the set of all 2× 2 matrices.

▶ (M2(R), +) is an abelian group?

▶ (M2(R), .) is an abelian group?
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Groups

Proposition 1

The identity element in a group G is unique; that is, there exists
only one element e ∈ G such that e ⋆ g = g ⋆ e = g , ∀g ∈ G .

Proof

if e is not unique, we suppose to have another identity element e ′

then we have both:

e ⋆ g = g ⋆ e = g and e ′ ⋆ g = g ⋆ e ′ = g

so

▶ if e is identity element then e ⋆ e ′ = e ′

▶ if e ′ is identity element then e ′ ⋆ e = e

▶ G is a group then e = e ⋆ e ′ = e ′ ⋆ e = e ′ (Q.E.D.)
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Groups

Proposition 2

If g is any element in a group G , then the inverse of g , g ′, is
unique.

Proof

if the inverse of g is not unique, we suppose to have g ′ and g ′′ are
inverses of g :

g ⋆ g ′ = g ′ ⋆ g = e and g ⋆ g ′′ = g ′′ ⋆ g = e

but we have associative property in G, thus:

g ′ = g ′ ⋆ e = g ′ ⋆ (g ⋆ g ′′) = (g ′ ⋆ g) ⋆ g ′′ = e ⋆ g ′′ = g ′′
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Groups

Proposition 3

Let G be a group. If a, b ∈ G , then (a ⋆ b)−1 = b−1 ⋆ a−1

Proof

We have

a ⋆ b ⋆ b−1 ⋆ a−1 = a ⋆ e ⋆ a−1 = a ⋆ a−1 = e

Similarly, we have

(a ⋆ b) ⋆ (a ⋆ b)−1 = e

Due to Proposition 2, inverse is unique

(a ⋆ b)−1 = b−1 ⋆ a−1
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Groups

Proposition 4

Let x be an element of a group G , then xm+n = xm ⋆ xn for all
integers m, n. We also define x0 = e.
We denote here xn = x ⋆ x ⋆ ... ⋆ x (n times).

Proof

Hint: Use induction
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Groups

Definition 2

The order of an algebraic structure (G , ⋆) is the cardinality of its
underlying set, and is denoted |G |.

For a finite set G , the order of (G , ⋆) is the number of elements in
G .

For a finite set G , the order of (G , ⋆) is the smallest integer
number such that am = e, ∀a ∈ G .
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Groups

Let g be an element of a group G, we say that g has finite order if
gn = e (o(g) = |g | = n)for some positive integer n.

Otherwise, if g is said to have the infinite order, o(g) = ∞

Doan Nhat Quang Groups 18 / 36



SubGroups

Definition 1

Let G be a group, a subset H of G is a subgroup if and only if it
satisfies the following conditions:

▶ the identity e of G is in H

▶ if h1, h2 ∈ H then h1 ⋆ h2 ∈ H as well

▶ if h ∈ H then h−1 ∈ H
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SubGroups

▶ A subgroup H of G is said to be proper if H ̸= G .

▶ The subgroup H = {e} of a group G is called the trivial
subgroup.
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SubGroups

Proposition 1

Let H and K be subgroups of a group G , then H ∩ K is also a
subgroup of G.

Proof

▶ H and K must have the same identity from G , then the
identity element belong to H ∩ K .

▶ if x and y are elements of H ∩K then x ⋆ y is an element of H
since x and y are elements of H. Same goes for x ⋆ y ∈ K .
Thus, x ⋆ y ∈ H ∩ K

▶ Same proof for the inverse x−1 of an element as required.
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SubGroups

Example 1

The group of integers is a subgroup of the groups of rational
numbers, real numbers and complex numbers under addition.

Example 2

Consider the set of non-zero real numbers, R∗, with the group
operation of multiplication. The identity of this group is 1 and the
inverse of any element a ∈ R∗ is just 1/a.
Q∗ is a subgroup of R∗.

▶ the identity of Q∗ is 1/1 = 1 ∈ R∗

▶ let 2 numbers q/r and s/t ∈ Q∗, then q/r .s/t ∈ Q∗

▶ the inverse of q/r is (q/r)−1 = r/q ∈ Q∗

Doan Nhat Quang Groups 22 / 36



SubGroups

Example 1

The group of integers is a subgroup of the groups of rational
numbers, real numbers and complex numbers under addition.

Example 2

Consider the set of non-zero real numbers, R∗, with the group
operation of multiplication. The identity of this group is 1 and the
inverse of any element a ∈ R∗ is just 1/a.
Q∗ is a subgroup of R∗.

▶ the identity of Q∗ is 1/1 = 1 ∈ R∗

▶ let 2 numbers q/r and s/t ∈ Q∗, then q/r .s/t ∈ Q∗

▶ the inverse of q/r is (q/r)−1 = r/q ∈ Q∗

Doan Nhat Quang Groups 22 / 36



SubGroups

Example 3

The group of all 2× 2 matrices of real numbers with determinant
equal to 1 is a subgroup of the group of all 2× 2 matrices of real
numbers with non-zero determinant under the operation of matrix
multiplication.

Example 4

Let H = {−1, 1, i ,−i} is a subgroup of C under multiplication.
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Cyclic Groups

Definition 1

The order of a group G , denoted by |G |, is the cardinality of G ,
that is the number of elements in G.

Definition 2

A group G is said to be cyclic, with generator g , if every element
of G is of the form gn = g ⋆ g ⋆ ... ⋆ g for some integer n. We
often denote G =< g > or (g)
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Cyclic Groups

Example 1

The group Z of integers under addition is a cyclic group, generated
by 1 and -1.

Example 2

Let n be a positive integer. The set Zn of integers modulo n is a
cyclic group of order n with respect to the operation of addition.

Zn = {0, 1, 2, ..., n − 1}

For example:
Z9 = {0, 1, 2, ..., 8}
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Cyclic Groups

Example 3

Let a subgroup U9 ∈ Z9 with U9 = {1, 2, 4, 5, 7, 8} is a cyclic group
under multiplication. Every member of this set is generated by 2.

21 = 2 ( mod 9), 22 = 4 ( mod 9)

23 = 8 ( mod 9), 24 = 7 ( mod 9)

25 = 5 ( mod 9), 26 = 1 ( mod 9)
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Cyclic Groups

Proposition 1

Every cyclic group is abelian.

Proof

Let G be a cyclic group and a ∈ G be a generator for G . If
g , h ∈ G , then they can written as powers of a, denoted by g = am

and h = an

If G is abelian thus, g ⋆ h = h ⋆ g . We have here:

g ⋆ h = am ⋆ an = am+n = an+m = an ⋆ am = h ⋆ g
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Cosets

Definition 1

Let H be a subgroup of a group G . A left coset of H in G is a
subset of G that is of the form x ⋆ H, where x ∈ G and

x ⋆ H = {y ∈ G : y = x ⋆ h for some h ∈ H}

Definition 2

Similarly, a right coset of H in G is a subset of G that is of the
form H ⋆ x , where x ∈ G and

H ⋆ x = {y ∈ G : y = h ⋆ x for some h ∈ H}
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Cosets

Example 1

Let H be a subgroup of Z6 consisting of elements 0 and 3 or
H = {0, 3}, the cosets are:

0 + H = 3 + H = {0, 3}

1 + H = 4 + H = {1, 4}

2 + H = 5 + H = {2, 5}
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Cosets

Definition 3

The index of a subgroup H in G is the number of right (left)
cosets. It is a positive number or ∞ and is denoted by [G : H].

Example 1

Let H be a subgroup Z6 consisting of elements 0 and 3 or
H = {0, 3}, the cosets are:

0 + H = 3 + H = {0, 3}

1 + H = 4 + H = {1, 4}

2 + H = 5 + H = {2, 5}

The index of H is 3.
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Cosets

Proposition 1

Let H be a subgroup of a group G . Then each left coset of H in G
has the same number of elements as H.

Proof

Let H = {h1, h2, ..., hm} where h1, h2, ..., hm are distinct. Let x be
element in G , then the left coset is x ⋆ H. We suppose to have
x ⋆ hi = x ⋆ hj ∈ x ⋆ H where i , j are integers from 1 to m, and we
expect that hi ̸= hj . But

hi = x−1 ⋆ x ⋆ hi = x−1 ⋆ x ⋆ hj = hj

Thus i = j so x ⋆ H have distinct elements.
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Cosets

Proposition 2

Let H be a subgroup of a group G . The number of left cosets of H
in G is the same as the number of right cosets of H in G .

Proof

Let r be exactly different left cosets of H in G, thus we have the
left cosets:

g1 ⋆ H, g2 ⋆ H, ..., gr ⋆ H : g1, g2, ..., gr ∈ G

x ∈ H ⋆ g−1
i Proposition 1

⇐⇒ x ⋆ (g−1
i )−1 ∈ H ⋆ g−1

i ⋆ (g−1
i )−1

⇐⇒ x ⋆ gi ∈ H ⋆ e
⇐⇒ (x−1)−1 ⋆ gi ∈ H
⇐⇒ x−1 ∈ gi ⋆ H Proposition 1
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Cosets

Proposition 3

Let H be subgroups of a group G , then the left cosets of H in G
have the following properties:

▶ x ∈ x ⋆ H, for all x ∈ G

▶ if x and y are elements of G , and if y = x ⋆ g for some g ∈ H
then x ⋆ h = y ⋆ h

Proof

▶ Let x ∈ G , then x = x ⋆ e where e is the identity element of G
and e ∈ H, thus x ∈ x ⋆ H (according to the subgroup
definition)

▶ Let x and y be elements of G, where y = x ⋆ g for some
g ∈ H, then y ⋆ h = x ⋆ g ⋆ h and x ⋆ h = y ⋆ (g−1) ⋆ h for all
h ∈ H. Moreover g ⋆ h ∈ H, thus y ⋆ H ⊂ x ⋆ H and
g−1 ⋆ h ∈ H thus x ⋆ H ⊂ y ⋆ H ⇐⇒ x ⋆ H = y ⋆ H.
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Lagrange’s Theorem

Theorem

Let G be a finite group and H be a subgroup of G , then |H|
divides |G | where |H| and |G | are orders of H and G respectively.
or [G : H] = G

H where [G : H] is the index of H in G .

Proof

▶ Each element of G belongs to at least one left coset of H in
G , and no element can belong to two distinct left cosets of H
in G . (Lemma 1)

▶ Therefore every element of G belongs to exactly one left coset
of H. Moreover each left coset of H contains |H| elements
(Lemma 2).

▶ Therefore |G | = n|H|, where n is the number of left cosets of
H in G . The result follows.
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Normal Subgroups

Definition

A subgroup H of a group G is normal in G if g ⋆ H = H ⋆ g for all
g ∈ G .

A normal subgroup of a group G is one in which the right and left
cosets are precisely the same.
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Normal Subgroups

Example 1

Let G be an abelian group. Every subgroup H of G is a normal
subgroup. Since g ⋆ h = h ⋆ g for all g ∈ G and h ∈ H, it will
always be the case that g ⋆ H = H ⋆ g .
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