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Basic facts on paths

Definition 1.1

A path of IRn is a map c : I → IRn, with I = [a, b]. The subset of
IRn C = c([a, b]) is called the curve parametrized by the path c.
c(a) and c(b) are the enpoints of the curve C. We way also that c
is a parametrization of the curve C.

Example 1.1

Let c : [0, 1]→ IR be given by

c(t) = (x0, y0, z0) + tv

where (x0, y0, z0) is a fixed point of IR3 and v a non null vector of
IR3. Then the curve associated with this path c is the segment of
IR3 [(x0, y0, z0); (x0, y0, z0) + v ].



Example 1.2

Let c : [0, 2π]→ IR2 be given by

c(t) = (cos t, sin t)

Then the associated curve C is the unit circle of IR2.

Definition 1.2

If c is a continuous map, derivable (or differentiable) . . . , we say
that the path c is continuous, derivable, . . . . The velocity vector at
time t at point c(t) is the vector c ′(t). The speed at time t and
point c(t) is the norm of this vector, that is ‖ c ′(t) ‖.

Remark 1.1

The velocity c ′(t) is a vector tangent to the path c. We say also
that it is tangent to the curve C parametrized by c.



Path integrals

Definition 1.3

Let c : [a, b]→ IRn be a path of class C 1 (by pieces). We call
length of c the number

L(c) ≡
∫ b

a
‖ c ′(t) ‖ dt

More generally, we have the following definition

Definition 1.4

With the same previous assumptions, let moreover f : IRn → IRn be
a continuous function (at least in a neighborhood of C). Then we
define ∫

c
f (s)ds ≡

∫ b

a
f (c(t)) ‖ c ′(t) ‖ dt



If f = 1, we recover the length of the path c .
Explanations : work with a path c : [a, b]→ IR3. Make polygonal
approximations.
Subdivision of order N of [a, b]. Consider the polygonal lines based
on points c(ti ), where

a = t0 < t1 < . . . < tN = b, ti+1 − ti =
b− a

N
, 0 ≤ i ≤ N − 1

Length of c will be almost equal to the length of this broken line,
for N large enough, that is

SN =
N−1
∑
i=0

‖ c(Ti+1)− c(ti ) ‖



If c(t) = (x(t), y(t), z(t)), for x(t), y(t) and z(t) on the interval
[ti ; ti+1], there exists t∗i , t∗∗i , t∗∗∗i such that

x(ti+1)− x(ti ) = x ′(t∗i )(ti+1 − ti )

y(ti+1)− y(ti ) = y ′(t∗∗i )(ti+1 − ti )

z(ti+1)− z(ti ) = z ′(t∗∗∗i )(ti+1 − ti )

And thus, we obtain

SN =
N−1
∑
i=0

√
x ′(t∗i )

2 + y ′(t∗∗i )2 + z ′(t∗∗∗i )2(ti+1 − ti )

Here is an important case. Assume that C is a plane curve, for
example contained in the plane (x0y) of IR3. Let f be a positive
function of variables x and y . Then

∫
c f (s)ds is the area of the

lateral surface.



Line integrals

~F a force field of IR3 that is a map from IR3 into IR3.
Assume that this field acts on a given particle of IR3 and this
particle is moving along a fixed curve C and that is submitted to
this force field ~F .
→ compute the work done by this field ~F on this particle.
If C is a line segment, for example, directed by a vector ~d , with
‖ ~d ‖ being the length of C, then the corresponding work is given
by

TC(~F ) = ~F .~d



If now, C is no more a line segment,

TC(F ) ≡
∫ b

a

~F (c(t)).c ′(t)dt

where c is a parametrization of the curve C and giving the position
of the particle on the curve C.
Explanation : note that in the case where C is a line segment, we
recover the first formula. Otherwise, t ∈ [t, t + ∆t] with ∆t small.
Then the particle will move from c(t) to c(t + ∆t). The
corresponding displacement vector is thus

~∆s = c(t + ∆t)− c(t) ' c ′(t)∆t

The work between c(t) and c(t + ∆t) will then be almost equal to

~F (c(t)). ~∆s ' ~F (c(t)).c ′(t)∆t

Now if we divide the interval [a, b] along a regular subdivision of
order N as above, with ∆t = ti+1 − ti , the total work done by ~F
will be almost equal to

N−1
∑
i=0

~F (c(ti )). ~∆s '
N−1
∑
i=0

~F (c(ti )).c
′(ti )∆t



Definition 1.5

Let ~F : IRn → IRn be a force field, continuous in a neighborhood of
the path c, c : [a, b]→ IRn (class C 1). Then we define the line
integral of ~F along c, or in other words, the work of ~F on c as the
number defined by∫

c

~F .ds ≡
∫ b

a

~F (c(t)).c ′(t)dt

Example 1.3

c(t) = (sin t; cos t, 0), 0 ≤ t ≤ 2π, et F = (x , y , z).

Definition 1.6

Notation : With the above assumptions and notations, we also
denote, if ~F = (F1, F2, F3), and n = 3∫

c

~F .ds =
∫
c

F1dx + F2dy + F3dz



Thus if c(t) = (x(t), y(t), z(t)), we have∫
c

F1dx + F2dy + F3dz =

∫ b

a
[F1(c(t))x

′(t) + F2(c(t))y
′(t) + F3(c(t))z

′(t)]dt

Example 1.4

Compute
∫
c x2dx + xydy + dz with c(t) = (t, t2, 1) and

0 ≤ t ≤ 1.

Example 1.5

Compute
∫
c cos zdx + exdy + eydz with c(t) = (1, t, et) and

0 ≤ t ≤ 2.



∫
c
~F .ds depends on ~F but also on the path c.

What is the link with the associated curve C ?
If c1 and c2 are two different paths, but parametrizing the same
curve C, we do not have∫

c1

~F .ds =
∫
c2

~F .ds ?

However, there are cases where∫
c1

~F .ds = ∓
∫
c2

~F .ds

Definition 1.7

Let h : I → I1 be a C 1 bijective map with I = [a, b] and
I1 = [a1, b1]. Let c : I1 → IRn be a path of class C 1 (by pieces).
Then p = c ◦ h : I → IRn is a parametrization of c.

In fact we have Im c = Im p. Thus c and p are two
parametrizations of the same curve C.



As we have p′(t) = c ′(h(t)).h′(t), we note that :
1) if h is stricly increasing, h(a) = a1 and h(b) = b1.
2) if h is strictly decreasing, h(a) = b1 and h(b) = a1.
Thus, we have one of the two following cases :
1) c ◦ h(a) = c(a1) and c ◦ h(b) = c(b1)
2) or c ◦ h(a) = c(b1) and c ◦ h(b) = c(a1)
In the first case, we say that the re-parametrization preserves the
orientation, while in the second case, it reverses the orientation.
If we preserve the orientation, a particle moving on C according to
c ◦ h will move in the same direction as along c.

Example 1.6

If c : [a, b]→ IR3 is C 1 then

cop : [a, b]→ IR3, cop(t) = c(a + b− t)

is a reparametrization of c reversing the orientation.



Theorem 1.1

Let F : IRn → IRn be a vector field, continuous in a neighborhood
of the path of class C 1 c : [a, b]→ IRn. Let p : [a1, b1]→ IRn be a
reparametrization of c. Then∫

p
F .ds = ∓

∫
c

F .ds

with the sign + if p preserves the orientation of c and the sign −
if p reverses the orientation.

Example 1.7

Let f (x , y , z) = (yz , xz , xy) and

c : [−5; 10]→ IR3, c(t) = (t, t2, t3)

We find ∫
c

F .ds = 984, 375 and
∫
cop

F .ds = −984, 375



Theorem 1.2

(change of parametrization for the path integrals). Let c be a path
of class C 1 (by pieces), p any reparametrization of c and
f : IR3 → IR a continuous map. Then∫

c
fds =

∫
p

fds

In the case when the field is a gradient, we have

Theorem 1.3

Assume that ~F = ∇f , with f : IR3 → IR C 1. Then∫
c

F .ds = f (c(b))− f (c(a))



Example 1.8

Let c(t) = (44/4, sin3(tπ/2), 0), t ∈ [0, 1]. We want to compute∫
c ydx + xdy. Here F = (y , x , 0) and thus F = ∇f avec f = xy.

Thus ....

Definition 1.8

We define a simple curve C as being the image of a path of class
C 1 (by pieces) c : I → IRn injective on the interior of I . We then
say that c is an adapted parametrization to C

A simple curve corresponds to a curve which does not self intersect
except eventually at the endpoints.
If I = [a, b], c(a) = P and c(b) = Q are the endpoints of C. Any
simple curve has two possible orientations. A curve equipped with
one of these two orientations is called an oriented simple curve.



Definition 1.9

We say that a simple curve C is closed if moreover we have
c(a) = c(b). Any simple and closed curve has two possible
orientations.

Definition 1.10

Let C be a simple orientated curve (eventually closed). Then we set∫
C

F .ds =
∫
c

F .ds

where c is any parametrization but adapted and preserving the
orientation of C.

Be careful : we need to check each time that the parametrization is
adapted and preserves the orientation.



Example 1.9

Let c(t) = (cos t, sin t, 0) and p(t) = (cos 2t, sin 2t, 0) ,
0 ≤ t ≤ 2π, and F = (y , 0, 0). Then we find that∫

c
F .ds = −π but

∫
p

F .ds = −2π

Note that Im c = Im p. p is not injective.

Proposition 1.1

Let C− the same curve as C but with the opposite orientation.
Then ∫

C
F .ds = −

∫
C−

F .ds

Remark 1.2

We may generalize all these facts to ”sums” of oriented maps.


