Mathematics for Physicists

Lecture 1
Line integrals

Radjesvarane ALEXANDRE

radjesvarane.alexandre@usth.edu.vn
or alexandreradja@gmail.com
University of Science and Technology of Hanoi






Basic facts on paths

Definition 1.1

A path of R" isa map ¢ : | — R", with | = [a, b]. The subset of
R" C = c([a, b)) is called the curve parametrized by the path c.
c(a) and c(b) are the enpoints of the curve C. We way also that ¢
is a parametrization of the curve C.

Example 1.1
Let ¢ : [0,1] — R be given by

c(t) = (x0, 0. 20) + tv

where (xo, o, 20) is a fixed point of R® and v a non null vector of
IR®. Then the curve associated with this path c is the segment of

R® [(x0, Y0, 20); (X0, Y0, Z0) + v].




Example 1.2
Let ¢ : [0,271] — IR? be given by

c(t) = (cost,sint)

Then the associated curve C is the unit circle of IR%.

Definition 1.2
If ¢ is a continuous map, derivable (or differentiable) ..., we say
that the path c is continuous, derivable, . ... The velocity vector at

time t at point c(t) is the vector ¢'(t). The speed at time t and
point c(t) is the norm of this vector, that is || ¢'(t) ||.

Remark 1.1

The velocity ¢'(t) is a vector tangent to the path c. We say also
that it is tangent to the curve C parametrized by c.




Path integrals

Definition 1.3

Let c : [a, b] = R" be a path of class C! (by pieces). We call
length of ¢ the number

ey = [ 1€ | o

More generally, we have the following definition
Definition 1.4
With the same previous assumptions, let moreover f : R" — R" be

a continuous function (at least in a neighborhood of C). Then we
define

/cf(s)ds = /ab fc(t) || <'(t) || dt




If f =1, we recover the length of the path c.

Explanations : work with a path c : [a, b] — R3. Make polygonal
approximations.

Subdivision of order N of [a, b]. Consider the polygonal lines based
on points c(t;), where

b—a .
a=t<ti <...<ty=h, t,'+1—t,':T,0§I§N—1

Length of ¢ will be almost equal to the length of this broken line,
for N large enough, that is

N-1
Sy = ;J | e(Tit1) —c(t) |



If c(t) = (x(t),y(t), z(t)), for x(t), y(t) and z(t) on the interval
[ti; tis1], there exists tf, t*, t/** such that

x(tir1) — x(t;) = X' (¢ ) (tir1 — t;)

y(tiy1) —y(ti) = y' (&7) (tiy1 — t;)
z(tip1) — z(t;) = 2 (7)) (ti1 — t7)

And thus, we obtain

N-1
Sw= Y, X () 4y (677 + 2/ (57t — )
i=0

Here is an important case. Assume that C is a plane curve, for
example contained in the plane (x0y) of R3. Let f be a positive
function of variables x and y. Then [ f(s)ds is the area of the

lateral surface.



Line integrals

F a force field of R® that is a map from R® into R3.
Assume that this field acts on a given particle of R3 and this
particle is moving along a fixed curve C and that is submitted to
this force field F.
— compute the work done by this field F on this particle.
If C is a line segment, for example, directed by a vector E] with
| d || being the length of C, then the corresponding work is given
by

Te(F)=F.d



If now, C is no more a line segment,

Te(F) = /:’ F(c(t)).c/(t)dt

where ¢ is a parametrization of the curve C and giving the position
of the particle on the curve C.

Explanation : note that in the case where C is a line segment, we
recover the first formula. Otherwise, t € [t, t+ At] with At small.
Then the particle will move from c(t) to c(t + At). The
corresponding displacement vector is thus

As = c(t + At) — c(t) ~ c/(t)At
The work between c(t) and c(t + At) will then be almost equal to
F(c(t)).As ~ F(c(t)).c'(t)At
Now if we divide the interval [a, b] along a regular subdivision of

order N as above, with At = t;;1 — t;, the total work done by F
will be almost equal to

N-1

Z Kzi (t))At



Definition 1.5

Let F: R" — R" be a force field, continuous in a neighborhood of
the path c, c : [a, b] — R" (class C'). Then we define the line
integral of F along c, or in other words, the work of F on c as the
number defined by

/C/?-.dsz/ab F(c(b).c'(t)dt

Example 1.3
c(t) = (sint;cost,0),0 <t <2, et F=(xy,2).

Definition 1.6

Notation : With the above assumptions and notations, we also
denote, if F = (F1, F2, F3), and n =3

/ﬁ&:/ﬁw+5w+aw




Thus if c(t) = (x(t), y(t), z(t)), we have

/ Fidx + Fady + F3dz =
c

/ab[Fl(C(t))X’(t) + Fa(c(t))y'(t) + Fs(c(t))Z'(t)]dt
Example 1.4

Compute [ x?dx + xydy + dz with c(t) = (t,t?,1) and
0<t<1

Example 1.5

Compute [_cos zdx + e*dy + e’dz with c(t) = (1,t,e") and
0<t<2




/. F.ds depends on F but also on the path c.

What is the link with the associated curve C?

If c1 and ¢ are two different paths, but parametrizing the same
curve C, we do not have

/ﬁﬁ:/ﬁ¢?
C1 2

However, there are cases where

/ ﬁ.ds::F/ F.ds
c1 (o))
Definition 1.7

Let h: 1 — I, be a C! bijective map with | = [a, b] and
h = [a1, b1]. Let c: 1 — R" be a path of class C* (by pieces).
Then p=coh: | — R" is a parametrization of c.

In fact we have Im ¢ = Im p. Thus ¢ and p are two
parametrizations of the same curve C.



As we have p'(t) = ¢’(h(t)).h'(t), we note that :

1) if h is stricly increasing, h(a) = a1 and h(b) = b.

2) if h is strictly decreasing, h(a) = by and h(b) = a3.

Thus, we have one of the two following cases :

1) coh(a) = c(a1) and co h(b) = c(b1)

2) or coh(a) = c(b1) and co h(b) = c(a1)

In the first case, we say that the re-parametrization preserves the
orientation, while in the second case, it reverses the orientation.

If we preserve the orientation, a particle moving on C according to
c o h will move in the same direction as along c.

Example 1.6
If c:la b] = R is C' then

Cop : [a, b] = R®, cop(t) = c(a+b—1t)

is a reparametrization of ¢ reversing the orientation.




Theorem 1.1

Let F : R" — IR" be a vector field, continuous in a neighborhood
of the path of class C! ¢ : [a, b] — R". Let p: [a1, b1] — R" be a
reparametrization of c. Then

/F$:$/F$
p c

with the sign + if p preserves the orientation of ¢ and the sign —
if p reverses the orientation.

Example 1.7
Let f(x,y,z) = (yz,xz,xy) and

c:[-510] = R, c(t) = (t, t?,t%)
We find

/ F.ds — 984,375 and / F.ds — —984, 375
c Cop




Theorem 1.2

(change of parametrization for the path integrals). Let ¢ be a path
of class C* (by pieces), p any reparametrization of ¢ and
f: R® — R a continuous map. Then

/fds:/fds
c P

In the case when the field is a gradient, we have
Theorem 1.3

Assume that E = Vf, with f : IR — R C.. Then

/CF.ds — £(c(b)) = F(c(a))




Example 1.8

Let c(t) = (4*/4,sin3(trr/2),0), t € [0,1]. We want to compute
J. ydx + xdy. Here F = (y,x,0) and thus F = Vf avec f = xy.
Thus ....

Definition 1.8

We define a simple curve C as being the image of a path of class
C! (by pieces) c : | — R" injective on the interior of I. We then
say that c is an adapted parametrization to C

A simple curve corresponds to a curve which does not self intersect
except eventually at the endpoints.

If | =a, b, c(a) = P and c(b) = Q are the endpoints of C. Any
simple curve has two possible orientations. A curve equipped with
one of these two orientations is called an oriented simple curve.




Definition 1.9

We say that a simple curve C is closed if moreover we have
c(a) = c(b). Any simple and closed curve has two possible
orientations.

Definition 1.10

Let C be a simple orientated curve (eventually closed). Then we set

/Fﬁ:/F%
C c

where c is any parametrization but adapted and preserving the
orientation of C.

Be careful : we need to check each time that the parametrization is
adapted and preserves the orientation.




Example 1.9

Let c(t) = (cost,sint,0) and p(t) = (cos2t,sin2t,0) ,
0<t<2m and F = (y,0,0). Then we find that

/F&:—nMy/F%:—m
c p

Note that Im ¢ = Im p. p is not injective.

Proposition 1.1

Let C~ the same curve as C but with the opposite orientation.

Then
/F$:—/F¢
C C—

Remark 1.2

We may generalize all these facts to "sums” of oriented maps.




