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Chapter 1- Line Integrals

1 Basic facts on paths

Definition 1.1 A path of IRn is a map c : I → IRn, with I = [a, b]. The subset of IRn

C = c([a, b]) is called the curve parametrized by the path c. c(a) and c(b) are the enpoints of

the curve C. We way also that c is a parametrization of the curve C.

Example 1.1 Let c : [0, 1]→ IR be given by

c(t) = (x0, y0, z0) + tv

where (x0, y0, z0) is a fixed point of IR3 and v a non null vector of IR3. Then the curve

associated with this path c is the segment of IR3 [(x0, y0, z0); (x0, y0, z0) + v].

Example 1.2 Let c : [0, 2π]→ IR2 be given by

c(t) = (cos t, sin t)

Then the associated curve C is the unit circle of IR2.

Definition 1.2 If c is a continuous map, derivable (or differentiable) . . . , we say that the

path c is continuous, derivable, . . . . The velocity vector at time t at point c(t) is the vector

c′(t). The speed at time t and point c(t) is the norm of this vector, that is ‖ c′(t) ‖.

Remark 1.1 The velocity c′(t) is a vector tangent to the path c. We say also that it is

tangent to the curve C parametrized by c.

2 Path integrals

Definition 2.1 Let c : [a, b]→ IRn be a path of class C1 (by pieces). We call length of c the

number

L(c) ≡
∫ b

a
‖ c′(t) ‖ dt

More generally, we have the following definition

Definition 2.2 With the same previous assumptions, let moreover f : IRn → IRn be a con-

tinuous function (at least in a neighborhood of C). Then we define∫
c
f(s)ds ≡

∫ b

a
f(c(t)) ‖ c′(t) ‖ dt
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Cleraly if f = 1, we recover the length of the path c.

Let us try to explain why the length as defined above coincides with the usual one (taking

into account the speed). To simplify, let us work with a path c : [a, b]→ IR3. The idea is that

to compute the length of c, we are going to make polygonal approximations. Let us consider

a subdivision of order N of [a, b]. Consider the polygonal lines based on points c(ti), where

a = t0 < t1 < . . . < tN = b, ti+1 − ti =
b− a
N

, 0 ≤ i ≤ N − 1

Then the idea is to say that the length of c will be almost equal to the length of this broken

line, for N large enough, that is

SN =
N−1∑
i=0

‖ c(Ti+1)− c(ti) ‖

If c(t) = (x(t), y(t), z(t)), applying the intermediate value theorem from calculus, for x(t),

y(t) and z(t) on the interval [ti; ti+1], there exists t∗i , t
∗∗
i , t∗∗∗i such that

x(ti+1)− x(ti) = x′(t∗i )(ti+1 − ti)

y(ti+1)− y(ti) = y′(t∗∗i )(ti+1 − ti)

z(ti+1)− z(ti) = z′(t∗∗∗i )(ti+1 − ti)

And thus, we obtain

SN =

N−1∑
i=0

√
x′(t∗i )

2 + y′(t∗∗i )2 + z′(t∗∗∗i )2(ti+1 − ti)

Formally when N goes to +∞, the polygonal line will be closer and closer to the curve C
and thus we recognized in the expression of SN the Riemann sum associated wth the integral

which defines the length of c.

The motivation for the definition of path integrals is done similarly.

Here is an important case. Assume that C is a plane curve, for example contained in the

plane (x0y) of IR3. Let f be a positive function of variables x and y. Then
∫
c f(s)ds is the

area of the lateral surface.

3 Line integrals

Let ~F be a forces field of IR3 that is a map from IR3 into IR3. Assume that this field acts on

a given particle of IR3. Moreover assume more precisely that this particle is moving along a
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fixed curve C and that is submitted to this force field ~F . We want to compute the work done

by this fielf ~F on this particle. In fact we want also to give a definition of what is the work.

If C is a line segment, for example, directed by a vector ~d, with ‖ ~d ‖ being the length of C,
then the corresponding work is given by

TC(~F ) = ~F .~d

This fits the intuitive notion: for a particle moving on this segment with the uniform velocity

~d, the work will be bigger when the force is directed in the same direction as ~d. Note that it

is null when ~d and ~F are orthogonal.

If now, C is no more a line segment, we’ll define the work by the formula

TC(F ) =

∫ b

a

~F (c(t)).c′(t)dt

where c is a parametrization of the curve C and giving the position of the particle on the

curve C.
Let us explain why this formula is (almost) correct. Firstly, note that in the case where C is a

line segment, we recover the first formula. In the general case, assume t ∈ [t, t+ ∆t] with ∆t

small. Then the particle will move from c(t) to c(t + ∆t). The corresponding displacement

vector is thus

~∆s = c(t+ ∆t)− c(t) ' c′(t)∆t

The work between c(t) and c(t+ ∆t) will then be almost equal to

~F (c(t)). ~∆s ' ~F (c(t)).c′(t)∆t

Now if we divide the interval [a, b] along a regular subdivision of order N as above, with

∆t = ti+1 − ti, the total work done by ~F will be almost equal to

N−1∑
i=0

~F (c(ti)). ~∆s '
N−1∑
i=0

~F (c(ti)).c
′(ti)∆t

and this is a Riemann sum associated with the integral in the above definition.

In conclusion, we introduce the following definition

Definition 3.1 Let ~F : IRn → IRn be a force field, continuous in a neighborhood of the path

c, c : [a, b]→ IRn (class C1). Then we define the line integral of ~F along c, or in other words,

the work of ~F on c as the number defined by∫
c

~F .ds ≡
∫ b

a

~F (c(t)).c′(t)dt
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Example 3.1 c(t) = (sin t; cos t, 0), 0 ≤ t ≤ 2π, et F = (x, y, z).

Definition 3.2 Notation: With the above assumptions and notations, we also denote, if

~F = (F1, F2, F3), and n = 3

∫
c

~F .ds =

∫
c
F1dx+ F2dy + F3dz

Thus if c(t) = (x(t), y(t), z(t)), we have∫
c
F1dx+ F2dy + F3dz =

∫ b

a
[F1(c(t))x

′(t) + F2(c(t))y
′(t) + F3(c(t))z

′(t)]dt

Example 3.2 Compute
∫
c x

2dx+ xydy + dz with c(t) = (t, t2, 1) and 0 ≤ t ≤ 1.

Example 3.3 Compute
∫
c cos zdx+ exdy + eydz with c(t) = (1, t, et) and 0 ≤ t ≤ 2.

It is important to note that
∫
c
~F .ds depends on ~F but also on the path c. What is the link

with the associated curve C? In particuliar, if we change the parametrization of the same

curve, do we change the value of the line integral? More precisely, if c1 and c2 are two different

paths, but parametrizing the same curve C, do we have∫
c1

~F .ds =

∫
c2

~F .ds ?

It is quite clear that in general the answer is on the negative: indeed, recall that it is linked

with the notion of work. A parametrization gives a way to move on the curve. Thus the work

depens on the way we move on that curve too.

However, there are cases where ∫
c1

~F .ds = ∓
∫
c2

~F .ds

Definition 3.3 Let h : I → I1 be a C1 bijective map with I = [a, b] and I1 = [a1, b1]. Let

c : I1 → IRn be a path of class C1 (by pieces). Then p = c ◦ h : I → IRn is a parametrization

of c.

In fact we have Im c = Im p. Thus c and p are two parametrizations of the same curve C.
As we have p′(t) = c′(h(t)).h′(t), we note that :

1) if h is stricly increasing, h(a) = a1 and h(b) = b1.

2) if h is strictly decreasing, h(a) = b1 and h(b) = a1.

Thus, we have one of the two following cases:

1) c ◦ h(a) = c(a1) and c ◦ h(b) = c(b1)
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2) or c ◦ h(a) = c(b1) and c ◦ h(b) = c(a1)

In the first case, we say that the re-parametrization preserves the orientation, while in the

second case, it reverses the orientation.

If we preserve the orientation, a particle moving on C according to c◦h will move in the same

direction as along c.

Example 3.4 If c : [a, b]→ IR3 is C1 then

cop : [a, b]→ IR3, cop(t) = c(a+ b− t)

is a reparametrization of c reversing the orientation.

Theorem 3.1 Let F : IRn → IRn be a vector field, continuous in a neighborhood of the path

of class C1 c : [a, b]→ IRn. Let p : [a1, b1]→ IRn be a reparametrization of c. Then∫
p
F.ds = ∓

∫
c
F.ds

with the sign + if p preserves the orientation of c and the sign − if p reverses the orientation.

Example 3.5 Let f(x, y, z) = (yz, xz, xy) and

c : [−5; 10]→ IR3, c(t) = (t, t2, t3)

We find ∫
c
F.ds = 984, 375 and

∫
cop

F.ds = −984, 375

Theorem 3.2 (change of parametrization for the path integrals). Let c be a path of class C1

(by pieces), p any reparametrization of c and f : IR3 → IR a continuous map. Then∫
c
fds =

∫
p
fds

In the case when the field is a gradient, we have

Theorem 3.3 Assume that ~F = ∇f , with f : IR3 → IR C1. Then∫
c
F.ds = f(c(b))− f(c(a))

Example 3.6 Let c(t) = (44/4, sin3(tπ/2), 0), t ∈ [0, 1]. We want to compute
∫
c ydx+ xdy.

Here F = (y, x, 0) and thus F = ∇f avec f = xy. Thus ....
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Definition 3.4 We define a simple curve C as being the image of a path of class C1 (by

pieces) c : I → IRn injective on the interior of I. We then say that c is an adapted

parametrization to C

A simple curve corresponds to a curve which does not self intersect except eventually at the

endpoints.

If I = [a, b], c(a) = P and c(b) = Q are the endpoints of C. Any simple curve has two possible

orientations. A curve equipped with one of these two orientations is called an oriented simple

curve.

Definition 3.5 We say that a simple curve C is closed if moreover we have c(a) = c(b). Any

simple and closed curve has two possible orientations.

Definition 3.6 Let C be a simple orientated curve (eventually closed). Then we set∫
C
F.ds =

∫
c
F.ds

where c is any parametrization but adapted and preserving the orientation of C.

Be careful: we need to check each time that the parametrization is adapted and preserves

the orientation.

Example 3.7 Let c(t) = (cos t, sin t, 0) and p(t) = (cos 2t, sin 2t, 0) , 0 ≤ t ≤ 2π, and

F = (y, 0, 0). Then we find that∫
c
F.ds = −π but

∫
p
F.ds = −2π

Note that Im c = Im p. p is not injective.

Proposition 3.1 Let C− the same curve as C but with the opposite orientation. Then∫
C
F.ds = −

∫
C−
F.ds

Remark 3.1 We may generalize all these facts to ”sums” of oriented maps.

4 Exercices of this Chapter

1. Compute the path integrals
∫
c f(x, y, z)ds for each case:

(a) f(x, y, z) = y, c(t) = (0, 0, t), 0 ≤ t ≤ 1.
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(b) f(x, y, z) = x+ y + z, c(t) = (sin t, cos t, t), t ∈ [0, 2π].

(c) f(x, y, z) = e
√
z, c(t) = (1, 2, t2), t ∈ [0, 1].

2. Let f : IR2 → IR be a C1 function. Show that the path integral of f along a given path

c in polar coordinates by r = r(θ), θ1 ≤ θ ≤ θ2 is:∫ θ2

θ1

f(r cos θ, r sin θ)

√
r2 + (

dr

dθ
)2 dθ

3. Letf : [a, b] → IR be a C1 function (by pieces). We call length of the associated curve

to f , denoted by L(f), the length of the path t→ (t, f(t)), t ∈ [a, b].

(a) Show that

L(f) =

∫ b

a

√
1 + (f ′(x))2dx

(b) End the computations when f(x) = lnx, a = 1, b = 2.

4. Let F (x, y, z) = (x, y, z). Compute the line integral of F in each case:

(a) c(t) = (t, t, t), t ∈ [0, 1].

(b) c(t) = (cos t, sin t, 0), t ∈ [0, 2π].

(c) c(t) = (sin t, 0, cos t), t ∈ [0, 2π].

(d) c(t) = (t2, 3t, 2t3), t ∈ [−1, 2]

5. Compte each of the following line integrals:

(a)
∫
c xdy − ydx, c(t) = (cos t, sin t), t ∈ [0, 2π].

(b)
∫
c xdx+ ydy, c(t) = (cosπt, sinπt), t ∈ [0, 2].

(c)
∫
c yzdx + xzdy + xydz, where c is made of the segments from (1, 0, 0) to (0, 1, 0)

to (0, 0, 1).

6. Let c be a sufficiently regular path.

(a) Assume that F is orthogonal to c′(t) at c(t). Show that∫
c
F.ds = 0

(b) Assume that F (c(t)) = λ(t)c′(t),wher λ(t) > 0. Show that∫
c
F.ds =

∫
c
‖ F ‖ ds


