Probability and Statistics

Exercices Chapter 2

1. Let X be a drv following a Poisson law with parameter λ, that is $P(X=j)=\frac{\lambda^{j}}{j!} e^{-\lambda}$, for all $j \in \mathbb{N}$. Find quickly the formula for the mean and variance of X.
2. (Sum of two dices). We throw two well balanced dices with 4 faces, and we denote by X the sum of obtained numbers.
(a) Compute the law of the $\operatorname{drv} X$.
(b) Compute its mean and variance.
(c) Compute $P(X<5), P(X \leq 5)$ and $P(3 \leq X<5)$.
(d) Compute and draw the distribution function of X.
3. Let X be a rv with distribution function

$$
F(x)=1-e^{-2 x / 3}, x>0 \text { and } 0 \text { otherwise }
$$

(a) Compute the density of X.
(b) Compute the mean and std of X.
4. Rayleigh law. Let X be a rv with distribution function

$$
F(x)=1-e^{-\frac{x^{2}}{2 a^{2}}}, x \geq 0 \text { and } 0 \text { othersie }
$$

Compute its density, its mean and its variance.
5. Let X be a normal rv with mean m and variance σ^{2}, that is $X \simeq \mathcal{N}\left(m, \sigma^{2}\right)$.

Compute the density, mean and variance of the rv $Y=a X+b$, with a and b constants, $a \neq 0$.
Choose a and b such that Y follows a standard normal law.
6. The law $\mathcal{N}(0,1)$ is given by a table, and gives an approximated value for the error function

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u
$$

(a) Let $X \simeq \mathcal{N}(0,1)$. Find α such that $P(X>\alpha)=0,95$.
(b) Let $Y \simeq \mathcal{N}\left(m, \sigma^{2}\right)$. Find $P(Y \in[m-\sigma ; m+\sigma])$ and $P(Y \in[m-2 \sigma ; m+2 \sigma])$. Find β s.t. $P(Y \in[m-\beta \sigma ; m+\beta \sigma])=0,95$.
7. Let $X \simeq \operatorname{Exp}(\lambda=2)$.
(a) Compute $P\left(X^{2}<0\right)$
(b) Use BT to compute $P(|X-1 / 2| \geq 2)$. Compare with the exact value.
8. A machine produces devices of diameter X following approximatively a law $N\left(\mu, \sigma^{2}=(0,01)^{2}\right)$. What should be the value of μ s.t. no more than 1% of devices have a diameter bigger than 3 cm ?
9. Let X be the utilisation duration in hours of a computer, in one working day. Assume that X follows a law $N(4,2)$. Find the number x_{0} s.t. for 90% of days, X is bigger than x_{0}.
10. Let X be the lifetime in months of an electronic device.
(a) Assume that $X \simeq N(20,16)$. Compute $P(|X|<24)$.
(b) Assume that $X \simeq G(\alpha=2, \lambda)$, that is

$$
f_{X}(x)=\lambda^{2} x e^{-\lambda x} 1_{x>0}
$$

Compute the expectation of Y.
11. An airline company notes that, one the average, 4% of persons having booked for a fixed flight, do not check in at the departure counter. Therefore, the policy of the company is to take 75 bookings for a flight with only 73 seats. What is the probability that a person checking in before the departure will have a seat (do all necessary assumptions)?

