
Lecture 2-1: PRAM model
Advanced Programming for HPC

Professor Lilian Aveneau

Theoretical model for discussing parallel algorithm complexity on
shared memory machines, ideally vector machines

Definition: In a shared memory parallel machine, all processors have
direct read and write access to memory

Definition: A vector machine is a particular shared memory parallel
machine with a single vector processor. In Flynn's taxonomy, this is the
SIMD mode.

1. Introduction

Definition: A vector processor is a processor with a single instruction
decoder and several Processing Units (PUs or ALUs). Thus, the same
instruction is carried out in parallel and synchronously by all the ALUs
on the various associated registers (or on the same vector register)

Warning: Vector processor performs an instruction synchronously, so
synchronization is not necessary. On the other hand, a machine with
shared memory equipped with several processors (vector or not) will
require synchronization mechanisms.

NB: a GPU usually works like a shared memory machine, equipped with
several vector processors...

1. Introduction

• Need to introduce some important definitions, concept and keywords

• To learn!

1.1. Definitions

• Two criteria
• Number of instructions processed at the same time (in parallel)
• Number of data processed by a single instruction

• The data?
• We speak about “vector instructions”

• Examples with Intel processors
• MMX: 64-bit processing (e.g., 2 integers)
• SSE: 128 bits processing (e.g., 4 integers)
• AVX: 256 bits processing (e.g., 8 integers)
• AVX 512: 512 bits processing (e.g., 16 floats)

1.1.1 Flynn’s Typology

• These two criteria give 4 types of parallel processors :
• SISD : Single Instruction, Single Data
• SIMD : Single Instructions, Multiple Data
• MISD : Multiple Instruction, Single Data
• MIMD : Multiple Instructions, Multiple Data

• In practice
• SISD: one logic processor, classical instructions
• SIMD: one logic processor, vector instructions (MMX, SSE, AVX...)
• MISD: several logic processors, classical instructions
• MIMD: several logic processors, vector instructions

• Example Bi Xeon Gold 6238 R: 2 * 28 cores => 112 EP * 16 (AVX512)

1.1.1 Flynn’s typology

• Main difficulty: expressing the parallelism
• Need to consider the material!
• Machine abstraction: theoretical model

• Define the tasks to be performed on different logical processors
• Have enough for balancing

• Example: 2 EP, one 1-ms task, and another 100-ms task…
• But not too much to avoid critical sections

• Well, when possible!

• Conclusion : the wet finger rule

1.1.2 Grain

Let:
• 𝑃 be a problem of size 𝑛 ;

• 𝑇𝑠𝑒𝑞 ሻሺ𝑛 be computation time of the best sequential algorithm realizing 𝑃

• Parallel algorithm realizing 𝑃 in 𝑇𝑝𝑎𝑟 ሻሺ𝑝,𝑛 with 𝑝 EP (Elementary Processors)

• Speed-up

• Work

• Efficiency

1.1.3 Parallel algorithm « Efficiency »

𝑆𝑞 𝑛 =
𝑇𝑠𝑒𝑞 𝑛

𝑇𝑝𝑎𝑟 𝑝, 𝑛

𝑊𝑝 𝑛 = 𝑝 ⋅ 𝑇𝑝𝑎𝑟 𝑝, 𝑛

𝑒𝑝 𝑛 =
𝑇𝑠𝑒𝑞 𝑛

𝑝 ⋅ 𝑇𝑝𝑎𝑟 𝑝, 𝑛
=
𝑇𝑠𝑒𝑞 𝑛

𝑊𝑝 𝑛

• Possible (recommended) to express parallel algorithm without
considering the hardware ...
• Number of tasks (grain) incorrect ?

• However, it is possible to simulate this theoretical algo. on any machine ...

• That’s the Brent theorem

Assume a parallel computer where each processor can perform an arithmetic

operation in unit time. Further, assume that the computer has exactly enough

processors to exploit the maximum concurrency in an algorithm with N operations,

such that T time steps suffice. Brent’s Theorem says that a similar computer with

fewer processors, P, can perform the algorithm in time

1.1.4 Simulation

𝑇𝑃 ≤ 𝑇 +
𝑁 − 𝑇

𝑃
Going further: Amdahl’s law, Gustafson’s law…

• It is usual to ask the question: "Why a parallel machine model?".

• On sequential machine it solves the problem of computability

• But this is not enough: algorithm can have too high complexity

• e.g., "vertex cover problem"

• Expressing complexity requires ... an algorithm!

• and thus, a machine model, at least theoretical

• With "big-O" notation, linear constant of complexity is omitted

• So, the precise machine is not useful

2. PRAM model

• Many sequential models coexist:
• Turing machine, recursive functions, cellular automata, lambda-

calculus ...

• Very few in parallel computing
• The most known : PRAM model (Parallel RAM)

• Principle based on the following approximations:
• Memory access costs nothing
• Memory is infinite (in size)
• Operations (ALU) cost 1
• Number of ALUs is infinite

2.1 Introduction

• One single program per vector machine (SIMD)

• Tip: each ALU has a unique identifier
• As for previous week, using cuda.grid()

• Big concurrency problem (shared memory, vector ...)

• Three concurrency models (read/write)

• EREW (Exclusive Read, Exclusive Write)

• CREW (Concurrent Read, Exclusive Write)

• CRCW (Concurrent Read, Concurrent Write)

2.1 Introduction

How to solve concurrent write accesses?

• Arbitrary mode

• Random decides among values to write

• Consistent mode

• If processing units write in the same box at the same time, then it
is necessarily the same value (for example true, or 0 ...).

• Merge mode

• Written value results from the application of a function defined by
the programmer

• Typically : addition, min, max, etc.

• Must be associative

2.1 Introduction

• Attention: all the PE are synchronized (vector machine)

• This is a theoretical model ...

• First very simple example

2.2 First example

Parity’s calculation of the elements of an array

FOR each PE i ∈ 1…𝑛 in parallel:
IF input[i] IS ODD THEN

odd[i] ← 1
ELSE

odd[i] ← 0
END IF

END FOR

Remove that word,
and you have a

sequential
algorithm!

Complexity ?
O(1) !

The conditional on a vector machine?

It is very simple:

• All PEs realize both alternatives!

• Use a mask to finalize the writes in register (load)

In the end, each PE performs 3 instructions:

• The test

• First alternative

• Second alternative

2.2 First example

Source : N. Richard

2.3 Second example: maximum

Calculation of the maximum of the elements of an array in sequence

maximum ← input[1]
FOR each PE i ∈ 2…𝑛 :

IF maximum < input[i] THEN
maximum ← input[i]

END IF
END FOR

Maximum of the elements of an array in CRCW, mode fusion

FOR each PE i ∈ 1…𝑛 in parallel:
maximum ← input[i]

END FOR
Fusion using « max »

• Still CRCW, consistent mode (multiple writing of the same value)

2.3 Second example

Compute the maximum of the elements of an array in CRCW, consistent mode

FOR each PE i ∈ 1…𝑛 in parallel:

isMax[i] ← true {First, each value is tagged as the maximum}

END FOR

FOR each PE (i,j) ∈ 1…𝑛 2 in parallel:

IF input[i] < input[j] THEN

isMax[i] ← false {Found a bigger value!}

END IF

END FOR

FOR each PE i ∈ 1…𝑛 in parallel:

IF isMax[i] THEN

maximum ← input[i]

END IF

END FOR

Complexity ?
O(1) !

• How many processors?
• 1st loop: 𝑛

• 2nd loop: 𝑛2

• 3rd loop: 𝑛

• Hence, 𝑛2 comparisons are made…

• Cost: one single comparison

• Work: 𝑛2

• Efficiency:
𝑛

𝑛2
so

1

𝑛
 (think about Brent’s theorem)

2.3 Second example

Switching the maximum algorithm from CRCW to CREW

2.4. From CRCW to EREW

Compute the maximum of the elements of an array in CREW

FOR each PE i ∈ 1…𝑛 in parallel:
max[i] ← input[i]

END FOR

j ← 1
WHILE j < n:

FOR each PE i ∈ 1…𝑛 in parallel:
IF i+j ≤ n THEN

max[i] ← MAX(max[i],max[i+j])
END IF

END FOR
j ← j * 2

END WHILE

maximum ← max[1]

Complexity ?
𝑂(log2 𝑛)

Example with input={1,2,3,4,5,6,7,8}

• max={1,2,3,4,5,6,7,8}

• j=1, max receive {2,3,4,5,6,7,8,8}

• j=2, max receive {4,5,6,7,8,8,8,8}

• j=4 and max receive {8,…,8}

Example with input={8,7,6,5,4,3,2,1}

• …

• j=4 and max receive {8,7,6,5,4,3,2,1}

• => maximum from beginning ;-)

2.4. From CRCW to EREW
Compute the maximum of the elements of an array in CREW

FOR each PE i ∈ 1…𝑛 in parallel:

max[i] ← input[i]

END FOR

j ← 1

WHILE j < n:
FOR each PE i ∈ 1…𝑛 in parallel:

IF i+j ≤ n THEN

max[i] ← MAX(max[i],max[i+j])

END IF

END FOR

j ← j * 2

END WHILE

maximum ← max[1]

• EREW version: avoid concurrent reading (in MAX)

2.4. From CRCW to EREW

Compute the maximum of the elements of an array in EREW

FOR each PE i ∈ 1…𝑛 in parallel:
max[i] ← input[i]

END FOR
j ← 1
WHILE j < n:

FOR each PE i ∈ 1…𝑛 in parallel:
IF i+j <= n THEN

temp ← max[i+j]
max[i] ← MAX(max[i], temp)

END IF
END FOR
j ← j * 2

END WHILE
maximum ← max[1]

• Complexity increased to 𝑂 log 𝑛 , but improved efficiency!
• Work: 𝑛 log 𝑛

• Efficiency:
𝑛

𝑛 log 𝑛
so

1

log 𝑛

• Number of comparisons (maximum) tends to 𝑛𝑙𝑜𝑔 𝑛 (for n=2𝑚)

• 𝑗 = 1 it exists 𝑛 − 1 comparisons

• 𝑗 = 2 it exists 𝑛 − 2 comparisons

• …

• 𝑗 =
𝑛

2
it exists 𝑛 −

𝑛

2
comparisons

2.4. From CRCW to EREW

So 𝑛 log 𝑛 − σ0
𝑚−1 2𝑘

Or 𝑛𝑙𝑜𝑔 𝑛 – ሺ2𝑚− 1ሻ

This tends to 𝑛𝑙𝑜𝑔 𝑛 when 𝑛 → ∞

• This result is generalized with the following theorem

Simulation theorem. For a given problem, no CRCW algorithm working
with 𝑝 PE can be faster by 𝑂 𝑙𝑜𝑔𝑝 than the fastest EREW algorithm
working with 𝑝 PE.

• NB

• This algorithm is generalized with the REDUCE pattern

• The reverse is a diffusion, or BROADCAST

2.4. From CRCW to EREW

Method used to build PRAM algorithms

• Bijection between array of size 𝑛 and linked list

• Notion used with iterator (C#, C++, ...)

Why linked list ?

• Cell contains one element (container), and the pointer next

• Easier to visualize algorithm with pointer, than 𝑖+𝑗 ...

Basically, does not change anything / index

• Still in O(log) ...

3. Pointer jumping

EREW calculation of the maximum of the elements of a list

FOR each PE i ∈ 1…𝑛 in parallel:

value[i] ← cells[i].value

next[i] ← cells[i].next

END FOR

FOR j ∈ 1… log n : { WHILE ∃ PE j | next[j] ≠ NIL }

FOR each PE i ∈ 1…𝑛 in parallel:

IF next[i] ≠ NIL THEN

aux[i] ← value[next[i]]

value[i] ← MAX(value[i], aux[i])

aux[i] ← next[i]

aux[i] ← next[aux[i]]

next[i] ← aux[i]

END IF

END FOR

END FOR

maximum ← value[1]

3.1 Introduction

CREW calculation of the distance from the elements of a list to the end of the list

FOR each PE i ∈ 1…𝑛 in parallel:
next[i] ← cells[i].next
dist[i] ← 1

END FOR

FOR j ∈ 1… log 𝑛 :
FOR each PE i ∈ 1…𝑛 in parallel:

IF next[i] ≠ NIL THEN
aux[i] ← dist[next[i]]
dist[i] ← dist[i] + aux[i]
aux[i] ← next[i]
aux[i] ← next[aux[i]]
next[i] ← aux[i]

END IF
END FOR

END FOR

3.2 Distance of elements to the end of a list

The order of the elements does not matter: let's take the indices of the
cells ...

• Initialisation

• 𝑗 = 1

3.2 Distance of elements to the end of a list

I 1 2 3 4 5 6 7 8

dist 1 1 1 1 1 1 1 1

next 2 3 4 5 6 7 8 NIL

I 1 2 3 4 5 6 7 8

dist 2 2 2 2 2 2 2 1

next 3 4 5 6 7 8 NIL NIL

• 𝑗 = 3

Let's take another order (permutation)

• Initialy

3.2 Distance of elements to the end of a list

I 1 2 3 4 5 6 7 8

dist 8 7 6 5 4 3 2 1

next NIL NIL NIL NIL NIL NIL NIL NIL

I 1 2 3 4 5 6 7 8

dist 1 1 1 1 1 1 1 1

next 3 7 8 5 2 NIL 6 4

• 𝑗 = 1

• 𝑗 = 2

• 𝑗 = 3

3.2 Distance of elements to the end of a list

I 1 2 3 4 5 6 7 8

dist 2 2 2 2 2 1 2 2

next 8 6 4 2 7 NIL NIL 5

I 1 2 3 4 5 6 7 8

dist 4 3 4 4 4 1 2 4

next 5 NIL 2 6 NIL NIL NIL 7

I 1 2 3 4 5 6 7 8

dist 8 3 7 5 4 1 2 6

next NIL NIL NIL NIL NIL NIL NIL NIL

CREW calculation of the rank of the elements of a list

FOR each PE i ∈ 1…𝑛 in parallel:

next[i] ← cells[i].next

rank[i] ← 1

END FOR

FOR j ∈ 1… 𝑙𝑜𝑔 𝑛 :

FOR each PE i ∈ 1…𝑛 in parallel:

IF next[i] ≠ NIL THEN

aux[i] ← rank[i]

rank[next[i]] ← rank[next[i]] + aux[i]

aux[i] ← next[i]

aux[i] ← next[aux[i]]

next[i] ← aux[i]

END IF

END FOR

END FOR

3.3 Rank of the elements of a list

Example with

• 𝑗 = 1

• 𝑗 = 2

• 𝑗 = 3

3.3 Rank of the elements of a list

I 1 2 3 4 5 6 7 8

Rank 1 1 1 1 1 1 1 1

next 2 3 4 5 6 7 8 NIL

I 1 2 3 4 5 6 7 8

Rank 1 2 2 2 2 2 2 2

next 3 4 5 6 7 8 NIL NIL

I 1 2 3 4 5 6 7 8

Rank 1 2 3 4 4 4 4 4

next 5 6 7 8 NIL NIL NIL NIL

I 1 2 3 4 5 6 7 8

Rank 1 2 3 4 5 6 7 8

next NIL NIL NIL NIL NIL NIL NIL NIL

Permutation:

• 𝑗 = 1

• 𝑗 = 2

• 𝑗 = 3

3.3 Rank of the elements of a list

I 1 2 3 4 5 6 7 8

Rank 1 1 1 1 1 1 1 1

next 3 7 8 5 2 NIL 6 4

I 1 2 3 4 5 6 7 8

Rank 1 2 2 2 2 2 2 2

next 8 6 4 2 7 NIL NIL 5

I 1 2 3 4 5 6 7 8

Rank 1 4 2 4 4 4 4 3

next 5 NIL 2 6 NIL NIL NIL 7

I 1 2 3 4 5 6 7 8

Rank 1 6 2 4 5 8 7 3

next NIL NIL NIL NIL NIL NIL NIL NIL

• PRAM model is simple but powerful

• Complexity on vector machine (SIMD)

• In practice, multiprocessors, even separate memory!

• Brent's theorem

• Passage from CRCW to EREW

• Overhead limited to log𝑛

4 Conclusion

	Diapositive 1 Lecture 2-1: PRAM model
	Diapositive 2 1. Introduction
	Diapositive 3 1. Introduction
	Diapositive 4 1.1. Definitions
	Diapositive 5 1.1.1 Flynn’s Typology
	Diapositive 6 1.1.1 Flynn’s typology
	Diapositive 7 1.1.2 Grain
	Diapositive 8 1.1.3 Parallel algorithm « Efficiency »
	Diapositive 9 1.1.4 Simulation
	Diapositive 10 2. PRAM model
	Diapositive 11 2.1 Introduction
	Diapositive 12 2.1 Introduction
	Diapositive 13 2.1 Introduction
	Diapositive 14 2.2 First example
	Diapositive 15 2.2 First example
	Diapositive 16 2.3 Second example: maximum
	Diapositive 17 2.3 Second example
	Diapositive 18 2.3 Second example
	Diapositive 19 2.4. From CRCW to EREW
	Diapositive 20 2.4. From CRCW to EREW
	Diapositive 21 2.4. From CRCW to EREW
	Diapositive 22 2.4. From CRCW to EREW
	Diapositive 23 2.4. From CRCW to EREW
	Diapositive 24 3. Pointer jumping
	Diapositive 25 3.1 Introduction
	Diapositive 26 3.2 Distance of elements to the end of a list
	Diapositive 27 3.2 Distance of elements to the end of a list
	Diapositive 28 3.2 Distance of elements to the end of a list
	Diapositive 29 3.2 Distance of elements to the end of a list
	Diapositive 30 3.3 Rank of the elements of a list
	Diapositive 31 3.3 Rank of the elements of a list
	Diapositive 32 3.3 Rank of the elements of a list
	Diapositive 33 4 Conclusion

