
Lecture 2-2: Parallel patterns
Advanced Programming for HPC

Professor Lilian Aveneau

Parallel programming with abstraction of the machine

• Not optimal, but ... easy to read and therefore use!

• Several APIs, for example:
• Cuda, Nvidia GPU only

• OpenCL, any GPU ... not functional with Nvidia
• SyCL, version 2.2

• C++ extension in STD

• C# extension, other languages

• Distributed environments : MPI

1. Introduction

Quite a few patterns:

• MAP (or Transform) : one-to-one transformation (or 2-to-1)

• GATHER and SCATTER : permutation

• REDUCE : sum (in the broadest sense)

• SCAN : prefix sum (in the broadest sense)

• Segmented versions of REDUCE and SCAN

• PARTITION : partitionnement

• COMPACT : or filter

• SORT : sort!

1. Introduction

Here, the simplest patterns of theoretical complexity 𝑂(1)

In practice:

• Brent's theorem gives 𝑂
𝑛

𝑝

• Ignoring the cost of memory access ...

• Maximum Efficiency (when 𝑝 divisor of 𝑛)

2. Constant time patterns

• MAP (or Transform) is the simplest

b = 𝑓 𝑎 1 , 𝑓 𝑎 2 ,… , 𝑓(𝑎 𝑛)

• Input
• List (a vector) of 𝑛 values of same type 𝑇1

• Function from 𝑇1 to 𝑇2, e.g. using functor or lambda function

• Output
• List (or vector) of 𝑛 values of same type 𝑇2

• The order of entry is preserved

2.1 MAP

Example

• Input
• 𝑎 = 1,2,3,4,5,6,7,8

• Function: (x: int -> int = return x * x)

• Expected output:
• 𝑏 = 1,4,9,16,25,36,49,64

2.1. Quick overview

MAP pattern

FOR each PE i ∈ 1…𝑛 in parallel:
output[i] ← Functor(input[i])

END FOR

2.1.2 PRAM implementation

• Function must not use other input values

• Complexity in 𝑂(1)

Handling multiple input/output per processors (loop) => First week

• Fixed block slicing
• Constant time functor

• Input sliced into continuous subarrays

• Fixed cutting by modulo
• Increasing/decreasing time functor

• Process by PE 𝑘 values 𝑘 + 𝑝 × 𝑖 starting from 𝑖 = 0

• Default: cache pollution

• On-demand strategy (dynamic)
• Dynamic load balancing: FIFO, semaphore ... overhead!

• Variable time functor and not monotonic

2.1.3 Implantation with 𝑝 processors

Different levels of parallelism

• Instruction vector by wire : MMX, AVX ...

• Intel Core i7 10850 H : 8 cores HT

• Bi-xeon Gold 6238 R : 2x28 cores HT

• Cluster, e.g. Jean Zay

• GPU Nvidia Turing TU 102 :
• 72 SMP, containing 64 cores: 4608 cores

• 72 RT cores

• 576 Tensor cores

• 288 texture units

2.1.4 Hybrid machine

• Pattern performing permutation of elements from A to B
• Not in place ! Sequential in place => 𝑂 𝑛 log 𝑛

• Permutation defined via array
• So, a function

• Example: 𝐴 = {‘𝑓𝑟’, ’𝑒𝑛’, ’𝑣𝑛’, ’𝑒𝑠’} and B : string, then is a function 𝑓 =
{‘𝑓𝑟’ → « 𝑏𝑜𝑛𝑗𝑜𝑢𝑟 », ‘𝑒𝑛’ → « ℎ𝑒𝑙𝑙𝑜 », ‘𝑣𝑛’ → « 𝑥𝑖𝑛 𝑐ℎà𝑜 », ‘𝑒𝑠’ → « ℎ𝑜𝑙à »}

• More precisely, the principle of the SCATTER pattern is to "send" the
elements of a source array to a new position in a destination array.
This destination position is provided by a function, thus an array

• NB: permutation on A is bijection from A to A

2.2 Scatter

Scatter example

• Given input {1,2,3,4,5,6,7,8},

• Destination {4,0,5,1,6,2,7,3} (index starting at 0)

• Result is {2,4,6,8,1,3,5,7}

Remarks

• Function is a permutation of indexes
• For n=8, {7,6,5,4,3,2,1,0} is correct,

• … but not {1,2,3,4,0,2,4,6}

• At last, it’s EREW !

2.2.1 Introduction

SCATTER pattern

FOR each PE i ∈ 1…𝑛 in parallel:

output[map[i]] ← input[i]

END FOR

2.2.2 PRAM implantation

Remarks

• Two inputs!
• Data to permute: input

• And the permutation function: map

• Constant complexity

• MAP-like strategy

• However... no spatial coherence of writings 
• Modulo strategy in reading

• On GPU, you have to take advantage of the spatial coherence!
• Block strategy in reading

• It will be necessary to experiment ☺

2.2.3 Implantation with 𝑝 processors

Very similar to Scatter : permutation of values

• Semantics is reversed!

The principle of the GATHER pattern is to "harvest" elements from a
source array to a new position in a destination array

• Both patterns are reversible ... by changing the permutation!
• One is the reciprocal of the other

2.3 Gather

GATHER pattern

FOR each PE i ∈ 1…𝑛 in parallel:

output[i] ← input[map[i]]

END FOR

2.3.2 PRAM implantation

• Note the position of the map function!

• MAP-like strategy

• However... no spatial coherence of the readings 
• Modulo strategy in writing

• On GPU, you must take advantage of the spatial coherence!
• Strategy not block in writing

• It will be necessary to experiment ☺

2.3.3 Implantation with 𝑝 processors

Or 𝛽-reduction

• Our first non-constant time parallel pattern

• Reduce set of values to single value

• Determinism: associative binary operation

• Works for all types

• Integers, real numbers, etc.

• Matrices

• Strings of characters

• Any structure

3. REDUCE pattern

Why is associativity required?

• Addition 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8
• Produces 8 × 8 + 1 /2, so 4 × 9 = 36

• Correct, whatever the order of the calculations

• Subtraction: 1-2-3-4-5-6-7-8

1 −෍

𝑖=2

8

𝑖 = 1 − ෍

𝑖=1

8

𝑖 − 1 = 1 −
8 × 9

2
+ 1 = 2 − 36 = −34

• Many associations give a wrong result, e.g.

1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 = −1 − 3 × −1 = 2

1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 = −8 + 16 = 8

3.1. Introduction

We have seen a first version in the previous chapter (operation = MAX)

3.2 Implantation on PRAM machine

Compute the maximum of the elements of an array in CREW

FOR each PE i ∈ 1…𝑛 in parallel:
max[i] ← input[i]

END FOR

j ← 1
WHILE j < n:

FOR each PE i ∈ 1…𝑛 in parallel:
IF i+j ≤ n THEN

max[i] ← MAX(max[i],max[i+j])
END IF

END FOR
j ← j * 2

END WHILE

maximum ← max[1]

• Reducing the number of processors means reducing the work
• And therefore, increase efficiency!

• Using exactly 𝑛 − 1 operations and therefore processors?

• Array {1,2,3,4,5,6,7,8}

• Compute 1 + 2 ; 3 + 4 ; 5 + 6 ; 7 + 8

• Then 3 + 7 ; 11 + 15

• And finaly (10 + 26)

• Generalization for 2𝑘 values (induction)

3.2 Implantation using PRAM machine

REDUCE pattern of array elements in CREW
FOR each PE i ∈ 1…𝑛 IN PARALLEL:

aux[i] ← input[i]

END FOR

j ← 1

WHILE j< n:
k ← j × 2
FOR each PE i ∈ 1…𝑛 STEP k IN PARALLEL:

IF i+j ≤ 𝑛 THEN

aux[i] ← Fun(aux[i],aux[i+j])

END IF

END FOR

j ← k

END WHILE

RETURN aux[1]

3.2 Implantation using PRAM machine

• Note the word step
• PE do not have consecutive numbers

• But spaced 𝑘 apart

• At first
𝑛

2
, then

𝑛

4
, then

𝑛

8
, etc.

• So 𝑛 − 1 applications in fine

3.2 Implantation using PRAM machine

REDUCE pattern of array elements in CREW
FOR each PE i ∈ 1…𝑛 IN PARALLEL:

aux[i] ← input[i]

END FOR

j ← 1

WHILE j< n:
k ← j × 2
FOR each PE i ∈ 1…𝑛 STEP k IN PARALLEL:

IF i+j ≤ 𝑛 THEN

aux[i] ← Fun(aux[i],aux[i+j])

END IF

END FOR

j ← k

END WHILE

RETURN aux[1]

• Possible to use 𝑛 − 1 reduction operations

• Complexity in 𝑂(
𝑛

𝑝
log 𝑛)

• Work per processor
• Sequential reduction of part of the data

• Write to array of size 𝑝

• Sequential end

• ... or parallel with 𝑝 processors!

3.3 Implantation using 𝑝 processors

	Diapositive 1 Lecture 2-2: Parallel patterns
	Diapositive 2 1. Introduction
	Diapositive 3 1. Introduction
	Diapositive 4 2. Constant time patterns
	Diapositive 5 2.1 MAP
	Diapositive 6 2.1. Quick overview
	Diapositive 7 2.1.2 PRAM implementation
	Diapositive 8 2.1.3 Implantation with p processors
	Diapositive 9 2.1.4 Hybrid machine
	Diapositive 10 2.2 Scatter
	Diapositive 11 2.2.1 Introduction
	Diapositive 12 2.2.2 PRAM implantation
	Diapositive 13 2.2.3 Implantation with p processors
	Diapositive 14 2.3 Gather
	Diapositive 15 2.3.2 PRAM implantation
	Diapositive 16 2.3.3 Implantation with p processors
	Diapositive 17 3. REDUCE pattern
	Diapositive 18 3.1. Introduction
	Diapositive 19 3.2 Implantation on PRAM machine
	Diapositive 20 3.2 Implantation using PRAM machine
	Diapositive 21 3.2 Implantation using PRAM machine
	Diapositive 22 3.2 Implantation using PRAM machine
	Diapositive 23 3.3 Implantation using p processors

