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Parallel programming with abstraction of the machine

• Not optimal, but ... easy to read and therefore use!

• Several APIs, for example:
• Cuda, Nvidia GPU only

• OpenCL, any GPU ... not functional with Nvidia 
• SyCL, version 2.2

• C++ extension in STD 

• C# extension, other languages

• Distributed environments : MPI

1. Introduction



Quite a few patterns:

• MAP (or Transform) : one-to-one transformation (or 2-to-1)

• GATHER and SCATTER : permutation

• REDUCE : sum (in the broadest sense)

• SCAN : prefix sum (in the broadest sense)

• Segmented versions of REDUCE and SCAN

• PARTITION : partitionnement

• COMPACT : or filter

• SORT : sort!

1. Introduction



Here, the simplest patterns of theoretical complexity 𝑂(1)

In practice: 

• Brent's theorem gives 𝑂
𝑛

𝑝

• Ignoring the cost of memory access ...

• Maximum Efficiency (when 𝑝 divisor of 𝑛)

2. Constant time patterns



• MAP (or Transform) is the simplest

b = 𝑓 𝑎 1 , 𝑓 𝑎 2 ,… , 𝑓(𝑎 𝑛 )

• Input
• List (a vector) of 𝑛 values of same type 𝑇1

• Function from 𝑇1 to 𝑇2, e.g. using functor or lambda function

• Output
• List (or vector) of 𝑛 values of same type 𝑇2

• The order of entry is preserved

2.1 MAP



Example 

• Input
• 𝑎 = 1,2,3,4,5,6,7,8

• Function: (x: int -> int = return x * x) 

• Expected output:
• 𝑏 = 1,4,9,16,25,36,49,64

2.1. Quick overview



MAP pattern

FOR each PE i ∈ 1…𝑛 in parallel:
output[i] ← Functor(input[i])

END FOR

2.1.2 PRAM implementation

• Function must not use other input values

• Complexity in 𝑂(1)



Handling multiple input/output per processors (loop) => First week

• Fixed block slicing
• Constant time functor

• Input sliced into continuous subarrays

• Fixed cutting by modulo
• Increasing/decreasing time functor

• Process by PE 𝑘 values 𝑘 + 𝑝 × 𝑖 starting from 𝑖 = 0

• Default: cache pollution

• On-demand strategy (dynamic)
• Dynamic load balancing: FIFO, semaphore ... overhead!

• Variable time functor and not monotonic

2.1.3 Implantation with 𝑝 processors



Different levels of parallelism

• Instruction vector by wire : MMX, AVX ...

• Intel Core i7 10850 H : 8 cores HT

• Bi-xeon Gold 6238 R : 2x28 cores HT 

• Cluster, e.g. Jean Zay

• GPU Nvidia Turing TU 102 :
• 72 SMP, containing 64 cores: 4608 cores

• 72 RT cores 

• 576 Tensor cores

• 288 texture units

2.1.4 Hybrid machine



• Pattern performing permutation of elements from A to B
• Not in place ! Sequential in place => 𝑂 𝑛 log 𝑛

• Permutation defined via array
• So, a function

• Example: 𝐴 = {‘𝑓𝑟’, ’𝑒𝑛’, ’𝑣𝑛’, ’𝑒𝑠’} and B : string, then is a function 𝑓 =
{‘𝑓𝑟’ → « 𝑏𝑜𝑛𝑗𝑜𝑢𝑟 », ‘𝑒𝑛’ → « ℎ𝑒𝑙𝑙𝑜 », ‘𝑣𝑛’ → « 𝑥𝑖𝑛 𝑐ℎà𝑜 », ‘𝑒𝑠’ → « ℎ𝑜𝑙à »}

• More precisely, the principle of the SCATTER pattern is to "send" the 
elements of a source array to a new position in a destination array. 
This destination position is provided by a function, thus an array

• NB: permutation on A is bijection from A to A

2.2 Scatter



Scatter example

• Given input {1,2,3,4,5,6,7,8}, 

• Destination {4,0,5,1,6,2,7,3} (index starting at 0)

• Result is {2,4,6,8,1,3,5,7}

Remarks

• Function is a permutation of indexes
• For n=8, {7,6,5,4,3,2,1,0} is correct,

• … but not {1,2,3,4,0,2,4,6}

• At last, it’s EREW ! 

2.2.1 Introduction



SCATTER pattern

FOR each PE i ∈ 1…𝑛 in parallel:

output[map[i]] ← input[i]

END FOR

2.2.2 PRAM implantation

Remarks

• Two inputs!
• Data to permute: input

• And the permutation function: map

• Constant complexity



• MAP-like strategy

• However... no spatial coherence of writings 
• Modulo strategy in reading

• On GPU, you have to take advantage of the spatial coherence! 
• Block strategy in reading

• It will be necessary to experiment ☺

2.2.3 Implantation with 𝑝 processors



Very similar to Scatter : permutation of values

• Semantics is reversed!

The principle of the GATHER pattern is to "harvest" elements from a 
source array to a new position in a destination array

• Both patterns are reversible ... by changing the permutation!
• One is the reciprocal of the other 

2.3 Gather



GATHER pattern

FOR each PE i ∈ 1…𝑛 in parallel:

output[i] ← input[map[i]]

END FOR

2.3.2 PRAM implantation

• Note the position of the map function!



• MAP-like strategy

• However... no spatial coherence of the readings 
• Modulo strategy in writing

• On GPU, you must take advantage of the spatial coherence! 
• Strategy not block in writing

• It will be necessary to experiment ☺

2.3.3 Implantation with 𝑝 processors



Or 𝛽-reduction

• Our first non-constant time parallel pattern

• Reduce set of values to single value

• Determinism: associative binary operation

• Works for all types

• Integers, real numbers, etc.

• Matrices

• Strings of characters

• Any structure

3. REDUCE pattern



Why is associativity required? 

• Addition 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8
• Produces 8 × 8 + 1 /2, so 4 × 9 = 36

• Correct, whatever the order of the calculations

• Subtraction: 1-2-3-4-5-6-7-8

1 −෍

𝑖=2

8

𝑖 = 1 − ෍

𝑖=1

8

𝑖 − 1 = 1 −
8 × 9

2
+ 1 = 2 − 36 = −34

• Many associations give a wrong result, e.g.

1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 = −1 − 3 × −1 = 2

1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 = −8 + 16 = 8

3.1. Introduction



We have seen a first version in the previous chapter (operation = MAX)

3.2 Implantation on PRAM machine

Compute the maximum of the elements of an array in CREW

FOR each PE i ∈ 1…𝑛 in parallel:
max[i] ← input[i]

END FOR

j ← 1
WHILE j < n:

FOR each PE i ∈ 1…𝑛 in parallel:
IF i+j ≤ n THEN

max[i] ← MAX(max[i],max[i+j])
END IF

END FOR
j ← j * 2

END WHILE

maximum ← max[1]



• Reducing the number of processors means reducing the work
• And therefore, increase efficiency!

• Using exactly 𝑛 − 1 operations and therefore processors?

• Array {1,2,3,4,5,6,7,8}

• Compute 1 + 2 ; 3 + 4 ; 5 + 6 ; 7 + 8

• Then 3 + 7 ; 11 + 15

• And finaly (10 + 26)

• Generalization for  2𝑘 values (induction)

3.2 Implantation using PRAM machine 



REDUCE pattern of array elements in CREW
FOR each PE i ∈ 1…𝑛 IN PARALLEL:

aux[i] ← input[i]

END FOR

j ← 1

WHILE j< n:
k ← j × 2
FOR each PE i ∈ 1…𝑛 STEP k IN PARALLEL:

IF i+j ≤ 𝑛 THEN

aux[i] ← Fun(aux[i],aux[i+j])

END IF

END FOR

j ← k

END WHILE

RETURN aux[1]

3.2 Implantation using PRAM machine 



• Note the word step
• PE do not have consecutive numbers

• But spaced 𝑘 apart

• At first 
𝑛

2
, then 

𝑛

4
, then

𝑛

8
, etc.

• So 𝑛 − 1 applications in fine

3.2 Implantation using PRAM machine 

REDUCE pattern of array elements in CREW
FOR each PE i ∈ 1…𝑛 IN PARALLEL:

aux[i] ← input[i]

END FOR

j ← 1

WHILE j< n:
k ← j × 2
FOR each PE i ∈ 1…𝑛 STEP k IN PARALLEL:

IF i+j ≤ 𝑛 THEN

aux[i] ← Fun(aux[i],aux[i+j])

END IF

END FOR

j ← k

END WHILE

RETURN aux[1]



• Possible to use 𝑛 − 1 reduction operations

• Complexity in 𝑂(
𝑛

𝑝
log 𝑛)

• Work per processor
• Sequential reduction of part of the data

• Write to array of size 𝑝

• Sequential end 

• ... or parallel with 𝑝 processors!

3.3 Implantation using 𝑝 processors
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