
Lecture 2-3: Scan
Advanced Programming for HPC

Professor Lilian Aveneau



• Very important pattern for parallelism on vector machine

• And by extension, on hybrid machine with many (vector) cores ...

• Like GPUs 

• Several variants

• Inclusive scan

• Exclusive scan

• Segmented versions

1 SCAN pattern



• Let the input be:
• An array of values 𝑋𝑖
• An associative operator ⊕

• It computes the following array of values 𝑌𝑖

𝑌𝑖 =ໄ

𝑘=1

𝑖

𝑋𝑖

• Examples 

• 1,1,1,1,1,1,1,1 and addition over ℤ : 1,2,3,4,5,6,7,8

• 1,2,3,4,5,6,7,8 and multiplication over ℤ : 1,2,6,24,120,720,5040,40320

1.1 Inclusive version



Inclusive SCAN pattern, EREW indexed version
{ copy in O(1) from X to Y }

FOR each PE i ∈ 1…𝑛 in parallel:

Y[i] ← X[i] 

END FOR

{ loop in 𝑂 log 𝑛 : pointer jumping! }

j ← 1
WHILE j < n:

FOR each PE i ∈ 1…𝑛 − 𝑗 in parallel:

aux[i] ← Y[i]

aux[i] ← aux[i] ⊕ Y[i+j] { Take care to order }

Y[i+j] ← aux[i]

END FOR

j ← j × 2
END FOR

1.1.1 PRAM version



• Less EP, so more sequential code

• Complexity is increasing, but so is efficiency

• Use associativity!

𝑌𝑖 =ໄ

𝑗=1

𝑖

𝑋𝑗 = ໄ

𝑗=1

𝑘

𝑋𝑗 ⊕ ໄ

𝑗=𝑘+1

𝑖

𝑋𝑗

• Method: example with 1,1,1,1,1,1,1,1 and 𝑝 = 2 EP

1. Make an inclusive SCAN by PE (on data block): {1,2,3,4} et 1,2,3,4

2. Then add 𝑌4 to the values in the second block: 𝑌4 ⊕ 1,2,3,4 = 5,6,7,8

1.1.2 Version with 𝑝 processors



• Efficiency?
• One processor ⇒ 7/(1 × 7) so 1 ☺

• Two processors ⇒
7

2× 3+2
=

7

10

• Eight processors⇒
7

8× 1+1+1
∼

1

3

• With 𝑝 = 4 it gives
• Per EP: 1,2 and 1,2 and 1,2 and 1,2
• Then you must calculate a value per block!? It is a SCAN

• 𝑝 is small, so sequential SCAN ⇒ 2 operations
• This gives {2,4,6,8} or {2,4,6} because the last value is useless

• At last, the addition over 𝑝 − 1 blocks: 2 parallel operations per EP
• 3,4 et {5,6} et {7,8}

• Efficiency ⇒
7

4× 1+2+2
=

7

20

1.1.2 Version with 𝑝 processors



Inclusive SCAN pattern, p-processor version
{ Block size to handle per EP }

blockSize ← 𝑛 + 𝑝 − 1 /𝑝

{ First step: sequential per block SCAN }

FOR EACH PE i ∈ 1…p IN PARALLEL:

blockStart ← 1 +blockSize× 𝑖 − 1 { 1 + -> or X’First }

Y[blockStart] ← X[blockStart]

FOR EACH j ∈ [1…blockSize-1]:
IF blockStart+j≤ n THEN

Y[blockStart+j] ← 

Y[blockStart+j-1] ⊕ X[blockStart+j]

END IF

END FOR

END FOR

1.1.2 Version with 𝑝 processors



Inclusive SCAN pattern, p-processor version
{ Second step : SCAN on the last values of the p-1

first blocks }

aux[1] ← Y[blockSize] { 1 -> or X’First }

FOR EACH j ∈ [2…p−1]: { In sequential, e.g. with 1st EP }

aux[j] ← aux[j-1] ⊕ Y[1+blockSize*j-1]

END FOR

1.1.2 Version with 𝑝 processors



Inclusive SCAN pattern, p-processor version
{ Last step: add the partial sums to the last blocks } 

FOR EACH PE i ∈ 1…p − 1 IN PARALLEL: { p-1 processors }

blockStart ← 1 +blockSize× 𝑖
FOR EACH j ∈ [0…blockSize−1]:

IF blockStart+j≤ n THEN

Y[blockStart+j] ← aux[i] ⊕ Y[blockStart+j]

END IF

END FOR

END FOR

{ Warning: during labwork, index start at 0 } 

1.1.2 Version with 𝑝 processors



• Same as the inclusive version, except for the end index:

𝑌𝑖 =ໄ

𝑗=1

𝑖−1

𝑋𝑗

⇒ In other words, 𝑋𝑖 is excluded

• Example: 𝑋 = 1,1,1,1,1,1,1,1
• Um ... what is 𝑌1 worth?

• Obligation to specify the null value!

• 𝑌𝑖 =⊕𝑗=1
𝑖−1 𝑋𝑗 = ∅ if 𝑖 ≤ 𝑗

• Thus, taking 0 for the addition, 𝑌 = 0,1,2,3,4,5,6,7

1.2 Exclusive version



Exclusive SCAN pattern, EREW version
FOR each PE i ∈ 1…𝑛 in parallel: { O(1), Y ← nil element }

IF i = 1 THEN Y[i] ← ⊥
ELSE Y[i] ← X[i-1]

END IF

END FOR

j ← 1
WHILE j < n:

FOR each PE i ∈ 1…𝑛 − 𝑗 in parallel:

aux[i] ← Y[i]

aux[i] ← aux[i] ⊕ Y[i+j]

Y[i+j] ← aux[i]

END FOR

j ← j × 2
END FOR

1.2.1 PRAM version 



Example with 𝑋 = 1,2,3,4,5,6,7,8 and ⊕ being multiplication over ℤ

• Initialisation: 𝑌 = 1,1,2,3,4,5,6,7 and 1 as nil element

• For 𝑗 = 1 there are 7 EP that compute
𝑌 = 1,1,2,6,12,20,30,42

• For 𝑗 = 2 there are 6 EP that compute

𝑌 = 1,1,2,6,24,120,360,840

• For 𝑗 = 4 there are 4 EP that compute 

𝑌 = 1,1,2,6,24,120,720,5040

1.2.1 PRAM version 



• Easy: resume inclusive version? 

• Yes, but beware of step 2: you need an inclusive SCAN

• To understand, let's go back to the partitioning

𝑌𝑖 = ໄ

𝑘=0

𝑗

𝑋𝑘 ⊕ ໄ

𝑘=𝑗+1

𝑖−1

𝑋𝑘 .

• Look at the first sum!

• So, you must add the missing term:

𝑌𝑖 = ໄ

𝑘=0

𝑗−1

𝑋𝑘 ⊕Xj ⊕ ໄ

𝑘=𝑗+1

𝑖−1

𝑋𝑘 .

• Respecting the order (associativity ≠ commutativity)

1.2.2 Version with 𝑝 processors



Exclusive SCAN pattern, p-processor version
{size of a block to be processed by each EP }

blockSize ← 𝑛 + 𝑝 − 1 /𝑝

{ First step: per block EXCLUSIVE SCAN}

FOR EACH PE i ∈ 1…p IN PARALLEL:

blockStart ← 1 +blockSize× 𝑖 − 1
Y[blockStart] ← ⊥
FOR EACH j ∈ [1…blockSize−1]: { Sequential! }

Y[blockStart+j] ← 

Y[blockStart+j-1] ⊕ X[blockStart+j]

END FOR

END FOR

1.2.2 Version with 𝑝 processors



Exclusive SCAN pattern, p-processor version
{ Step 2: INCLUDING SCAN on last block values }

aux[1] ← Y[blockSize] ⊕ X[blockSize] { missing value }

FOR EACH i ∈ [2…p−1]: { Sequentially, e.g. on EP 1 }

aux[j] ← aux[j-1] ⊕ Y[blockSize×j]⊕ X[blockSize×j]
END FOR

{ Last step: add partial sums } 

FOR EACH PE i ∈ 2…p IN PARALLEL:

blockStart ← 1 +blockSize× 𝑖 − 1
FOR EACH j ∈ [0…blockSize-1]:

IF blockStart+j≤ n THEN

Y[blockStart+j] ← aux[i-1] ⊕ Y[blockStart+j]

END IF

END FOR

END FOR

1.2.2 Version with 𝑝 processors


	Diapositive 1 Lecture 2-3: Scan
	Diapositive 2 1 SCAN pattern
	Diapositive 3 1.1 Inclusive version
	Diapositive 4 1.1.1 PRAM version
	Diapositive 5 1.1.2 Version with p processors
	Diapositive 6 1.1.2 Version with p processors
	Diapositive 7 1.1.2 Version with p processors
	Diapositive 8 1.1.2 Version with p processors
	Diapositive 9 1.1.2 Version with p processors
	Diapositive 10 1.2 Exclusive version
	Diapositive 11 1.2.1 PRAM version 
	Diapositive 12 1.2.1 PRAM version 
	Diapositive 13 1.2.2 Version with p processors
	Diapositive 14 1.2.2 Version with p processors
	Diapositive 15 1.2.2 Version with p processors

