Lecture 2-3: Scan

Advanced Programming for HPC

Professor Lilian Aveneau

1 SCAN pattern

* Very important pattern for parallelism on vector machine

* And by extension, on hybrid machine with many (vector) cores ...

* Like GPUs

e Several variants
* Inclusive scan
* Exclusive scan

* Segmented versions

1.1 Inclusive version

* Let the input be:

* An array of values {X;}
e An associative operator @

* It computes the following array of values {Y;}

i

V= EPx.
1

k=

* Examples
« {1,1,1,1,1,1,1,1} and addition over Z : {1,2,3,4,5,6,7,8}
« {1,2,3,4,5,6,7,8} and multiplication over Z : {1,2,6,24,120,720,5040,40320}

1.1.1 PRAM version

Inclusive SCAN pattern, EREW indexed version
{ copy in O(1) from X to Y }
FOR each PE i € |1..n| in parallel:
Y[1] « X[1]
END FOR
{ loop in O(logn): pointer jumping! }
jel
WHILE § < n:
FOR each PE i €[l..n—j| in parallel:
aux|[1] « Y[1]
aux[1] « aux[1] @ Y[i+]] { Take care to order }
Y[i+3] < aux[i]
END FOR
jejXx2
END FOR

1.1.2 Version with p processors

* Less EP, so more sequential code

* Complexity is increasing, but so is efficiency

* Use associativity!

o
|

i K i
- {Dufo{]
j=1 j=1 j=k+1
* Method: example with {1,1,1,1,1,1,1,1} andp = 2 EP
1. Make an inclusive SCAN by PE (on data block): {1,2,3,4} et {1,2,3,4}

2. Then add Y, to the values in the second block: Y, & {1,2,3,4} = {5,6,7,8}

1.1.2 Version with p processors

* Efficiency?

* One processor = 7/(1X7)s01®©
* Two processors = ’ =L
2x(3+2) 10
: 7 1
* Eight processors = ~ =

8x(1+1+1) 3
* With p = 4 it gives
* PerEP: {1,2} and {1,2} and {1,2} and {1,2}
* Then you must calculate a value per block!? It is a SCAN

* pis small, so sequential SCAN = 2 operations
* This gives {2,4,6,8} or {2,4,6} because the last value is useless

* At last, the addition over p — 1 blocks: 2 parallel operations per EP
« {3,4} et {56} et {7,8}
7 7

 Efficiency = (25D =5

1.1.2 Version with p processors

{ Block size to handle per EP }
blockSize «(n+p—1)/p

{ First step: sequential per block SCAN }
FOR EACH PE 1 € [1..p|] IN PARALLEL:
blockStart « 1+blockSizex(i—1) { 14+ -> or X’'First }
Y[blockStart] ¢« X[blockStart]
FOR EACH j €[l..blockSize-1]:
IF blockStart+j] < n THEN
Y[blockStart+j] «
Y[blockStart+j-1] @ X[blockStart+j]
END IF
END FOR
END FOR

1.1.2 Version with p processors

Inclusive SCAN pattern, p-processor version
{ Second step : SCAN on the last values of the p-1I

first blocks }

aux[1l] « Y[blockSize] { 1 -> or X’'First }

FOR EACH j € |2..p—1]|: { In sequential, e.g. with 1st EP }
aux[J] <« aux[J-1] @ Y[l+blockSize*j-1]
END FOR

1.1.2 Version with p processors

Inclusive SCAN pattern, p-processor version
{ Last step: add the partial sums to the last blocks }

FOR EACH PE i € |1..p— 1] IN PARALLEL: { p-1 processors }
blockStart « 1+blockSizeXIi
FOR EACH j € [0..blockSize—1]:
IF blockStart+] < n THEN
Y[blockStart+j] « aux[i] @ Y[blockStart+7]
END IF
END FOR
END FOR

{ Warning: during labwork, 1ndex start at 0 }

1.2 Exclusive version

* Same as the inclusive version, except for the end index:

(i—1)
< Yl —_ 69 Xj >
\ J=1

= In other words, X; is excluded
e Example: X ={1,1,1,1,1,1,1,1}

* Um ... whatis Y; worth?
* Obligation to specify the null value!

Y, =@ X, =0ifi <
 Thus, taking O for the addition, Y = {0,1,2,3,4,5,6,7}

1.2.1 PRAM version

FOR each PE 1 €[1..n| in parallel: { O(1), Y « nil element }
IF 1 = 1 THEN Y [1] « L
ELSE Y[1] « X[1-1]
END IF
END FOR
j 1
WHILE j§ < n:
FOR each PE i €[1..n—j| in parallel:
aux[1] <« Y[1i]
aux[1] « aux[i] @ Y[i+7]
Y[i+9] < aux[i]
END FOR
jejXx?2
END FOR

1.2.1 PRAM version

Example with X = {1,2,3,4,5,6,7,8} and @ being multiplication over Z

* |nitialisation: Y = {1,1,2,3,4,5,6,7} and 1 as nil element

* For j = 1 there are 7 EP that compute
Y ={1,1,2,6,12,20,30,42}

* For j = 2 there are 6 EP that compute
Y =1{1,1,2,6,24,120,360,840}

* For j = 4 there are 4 EP that compute
Y =1{1,1,2,6,24,120,720,5040}

1.2.2 Version with p processors

e Easy: resume inclusive version?

* Yes, but beware of step 2: you need an inclusive SCAN
* To understand, let's go back to the partitioning

~{eno(d)

k=0 k=j+1
* Look at the first sum!
* So, you must add the missing term:

el

k=0 k=j+1

* Respecting the order (associativity # commutativity)

1.2.2 Version with p processors

{size of a block to be processed by each EP }
blockSize «(n+p—1)/p

{ First step: per block EXCLUSIVE SCAN}
FOR EACH PE i € |1..p|] IN PARALLEL:
blockStart < 1+blockSizeX (i —1)
Y[blockStart] « 1
FOR EACH j € |l..blockSize—1]|: { Sequential! }
Y[blockStart+j] «
Y[blockStart+j-1] @ X[blockStart+j]
END FOR
END FOR

1.2.2 Version with p processors

{ Step Z2: INCLUDING SCAN on last block values }

aux[1l] « Y[blockSize] @ X[blockSize] { missing value }

FOR EACH i € |2..p—1|: { Sequentially, e.g. on EP 1 }
aux[j] « aux[J-1] @ Y[blockSizeXj] @ X[blockSizeX7]

END FOR

{ Last step: add partial sums }
FOR EACH PE i €[2..p| IN PARALLEL:
blockStart « 1+blockSizeXx (i—1)
FOR EACH j € |0..blockSize-1]:
IF blockStart+] < n THEN
Y[blockStart+j] « aux[i-1] @ Y[blockStart+7j]
END IF
END FOR
END FOR

	Diapositive 1 Lecture 2-3: Scan
	Diapositive 2 1 SCAN pattern
	Diapositive 3 1.1 Inclusive version
	Diapositive 4 1.1.1 PRAM version
	Diapositive 5 1.1.2 Version with p processors
	Diapositive 6 1.1.2 Version with p processors
	Diapositive 7 1.1.2 Version with p processors
	Diapositive 8 1.1.2 Version with p processors
	Diapositive 9 1.1.2 Version with p processors
	Diapositive 10 1.2 Exclusive version
	Diapositive 11 1.2.1 PRAM version
	Diapositive 12 1.2.1 PRAM version
	Diapositive 13 1.2.2 Version with p processors
	Diapositive 14 1.2.2 Version with p processors
	Diapositive 15 1.2.2 Version with p processors

