
Lecture 2-4: More patterns
Advanced Programming for HPC

Professor Lilian Aveneau

1. PARTITION and COMPACT patterns

• SCAN allows to make many new patterns!

• Two examples:

• PARTITION: move elements to get two sets according to a given predicate

• COMPACT: same, but keeping only one of the two subsets

• Separate set of values
• Into two subsets according to a predicate

• Keeping the respective order of each subset

• Example with 𝐸 = 1,2,3,4,5,6,7,8 and 𝑃 = 0,1,0,1,0,1,0,1
• Result is 𝐹 = 2,4,6,8,1,3,5,7

• First the elements validating the predicate,

• ... then the others

• Algorithm based on 4 steps:
• MAP, Exclusive SCAN, Inclusive REVERSE SCAN, and PERMUTATION

1.1 PARTITION (or SPLIT) pattern

• First step: initialize two lists of positions (of size 𝑛 + 1).
• First for leading values, second for trailing values

1.1 PARTITION (or SPLIT) pattern

PARTITION pattern on PRAM CREW machine: first step
headPosition[1] ← 0 { for the exclusive SCAN! }

FOR EACH EP i ∈ 1…p IN PARALLEL:

IF predicate[i] THEN

headPosition[i+1] ← 1 { size n+1 }

tailPosition[i] ← 0

ELSE

headPosition[i+1] ← 0 { size n+1 }

tailPosition[i] ← 1

END IF

END FOR

• Exclusive SCAN on leading elements (validating predicate)

1.1 PARTITION (or SPLIT) pattern

PARTITION on PRAM CREW machine: step 2, SCAN on the leading elements
j ← 1

WHILE j < n:

FOR each EP i ∈ 1…𝑛 − 𝑗 in parallel:

aux[i] ← headPosition[i]

aux[i] ← aux[i] ⊕ headPosition[i+j]

headPosition[i+j] ← aux[i]

END FOR

j ← j × 2

END FOR

• Inclusive REVERSE SCAN on trailing elements

1.1 PARTITION (or SPLIT) pattern

PARTITION on PRAM CREW machine : step 3, INCLUSIVE REVERSE SCAN
j ← 1

WHILE j < n:

FOR each EP i ∈ 1…𝑛 − 𝑗 in parallel:

aux[n-(i-1)] ← tailPosition[n-(i-1)]

aux[n-(i-1)] ←

aux[n-(i-1)] ⊕ tailPosition[n-(i-1+j)]

tailPosition[n-(i-1+j)] ← aux[n-(i-1)]

END FOR

j ← j × 2

END FOR

• Last step: permutation, via a SCATTER

1.1 PARTITION (or SPLIT) pattern

PARTITION on PRAM CREW machine: step 4, permutation

{ Last step: SCATTER data to their leading and trailing positions

and tail positions.

We need a MAP to know the destinations :

we calculate it on the fly... }

FOR EACH EP i ∈ 1…p IN PARALLEL:

IF predicate[i] THEN

Y[headPosition[i] + 1] ← X[i] { +1 => +Y’First }

ELSE

Y[n – tailPosition[i] + 1] ← X[i] {+1 => +Y’First }

END IF

END FOR

Example with {1,2,3,4,5,6,7,8} and predicates {0,1,0,1,0,1,0,1}

• Initialisation :
• headPosition = {0,0,1,0,1,0,1,0}

• tailPosition = {1,0,1,0,1,0,1,0}

• Exclusive SCAN (via initialisation !)
• headPosition = {0,0,1,1,2,2,3,3}

• Inclusive SCAN (left to right)
• tailPosition = {4,3,3,2,2,1,1,0}

• SCATTER gives

• 𝑌 = {2,4,6,8,1,3,5,7}

1.1 PARTITION (or SPLIT) pattern

Pattern PARTITION on PRAM CREW machine: first step

headPosition[1] ← 0 { pour SCAN exclusif ! }

FOR EACH PE i ∈ 1…p IN PARALLEL:

IF predicat[i] THEN

headPosition[i+1] ← 1 { taille n+1 }

tailPosition[i] ← 0

ELSE

headPosition[i+1] ← 0 { taille n+1 }

tailPosition[i] ← 1

END IF

END FOR

PARTITION on PRAM CREW machine: step 2, SCAN over leading elements
j ← 1

WHILE j < n:

FOR each PE i ∈ 1…𝑛 − 𝑗 in parallel:

aux[i] ← headPosition[i]

aux[i] ← aux[i] ⊕ headPosition[i+j]

headPosition[i+j] ← aux[i]

END FOR

j ← j × 2

END FOR

PARTITION on PRAM CREW machine: step 3, INCLUSIVE SCAN
j ← 1

WHILE j < n:

FOR each PE i ∈ 1…𝑛 − 𝑗 in parallel:

aux[n-(i-1)] ← tailPosition[n-(i-1)]

aux[n-(i-1)] ←

aux[n-(i-1)] ⊕ tailPosition[n-

tailPosition[n-(i-1+j)] ← aux[n-(i-1)]

END FOR

j ← j × 2

END FOR

PARTITION on PRAM CREW machine: step 4, permutation

{ Dernière étape : SCATTER des données vers leur position en tête

 et en queue.

 Il faut un MAP pour connaître les destinations :

 nous le calculons à la volée …}

FOR EACH PE i ∈ 1…p IN PARALLEL:

IF predicat[i] THEN

Y[headPosition[i] + 1] ← X[i]

ELSE

Y[n – (tailPosition[i]-1)] ← X[i]

END IF

END FOR

• Very similar to PARTITION

• Difference
• Keeps only values whose predicate is True

• Other values ? Disappear

• Variable size result ≤ 𝑛

• Other patterns providing "variable" result: ALLOCATE
• Takes array of values, e.g. {2,4,3}

• Provides array of size 2 + 4 + 3

• Plus, array (option) index start: {0,2,6}

1.2 COMPACT pattern

• Algorithm in 4 steps
• MAP : initialization of the position table
• SCAN on this array
• ALLOCATION of the result array (size ≤ 𝑛)
• SCATTER of the elements whose predicate is true

• SCAN :

• Exclusive?

• Good position, but not difficult to do ALLOCATE

• Inclusive?

• Bad position, easy ALLOCATE

1.2 COMPACT pattern

• First step: initialize destination positions

1.2 COMPACT pattern

COMPACT pattern on a PRAM CREW machine

{First initialization step }

FOR EACH EP i ∈ 1…p IN PARALLEL:

IF predicate[i] THEN

position[i] ← 1

ELSE

position[i] ← 0

END IF

END FOR

• Second step: Inclusive SCAN

1.2 COMPACT pattern

COMPACT pattern on a PRAM CREW machine
{ Second step: SCAN on the positions }

j ← 1
WHILE j < n:

FOR each EP i ∈ 1…𝑛 − 𝑗 in parallel:

{ Inclusive SCAN }

aux[i] ← position[i]

aux[i] ← aux[i] ⊕ position[i+j]

position[i+j] ← aux[i]

END FOR

j ← j × 2
END FOR

• ALLOCATION : last SCAN value

1.2 COMPACT pattern

COMPACT pattern on a PRAM CREW machine

{ Allocation }

size ← position[n]

• At last, the conditional permutation (or SCATTER_IF)

1.2 COMPACT pattern

COMPACT pattern on a PRAM CREW machine

{ Last step: conditional SCATTER of the data }

FOR EACH EP i ∈ 1…p IN PARALLEL:

IF predicate[i] THEN

Y[position[i]] ← X[i]

END IF

END FOR

Example with 1,2,3,4,5,6,7,8 and 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 = 𝐼𝑠𝑃𝑟𝑖𝑚𝑒

• Initialisation

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0,1,1,0,1,0,1,0

• Inclusive SCAN

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0,1,2,2,3,3,4,4

• ALLOCATE :

𝑠𝑖𝑧𝑒 = 4

• SCATTER_IF

𝑌 = {2,3,5,7}

1.2 COMPACT pattern

Example with SPLIT_AND_MERGE sort

• SCAN, REDUCE, … they are not suitable

• Packets must be processed, and done in parallel...
• Possible: data are assembled in contiguous arrays

• Know the beginning of each piece (segment)
• Second array

• Two versions
• REDUCE

• SCAN (broad sense)

2.Segmented patterns

• Here inclusive version only
• But same idea for exclusive, same for reversed ;-)

• Constraint: apply ⊕ for segment values only.

• Two inputs:

• 𝑋 data.

• 𝑆 segments: here, 1 number per X’s data.

• Operator is modified to apply to two inputs!

2.1. SEGMENTED SCAN

ໄ 𝑋𝑖 , 𝑆𝑖 , 𝑋𝑗 , 𝑆𝑗 = ൝
𝑋𝑖 ⊕𝑋𝑗 𝑖𝑓𝑆𝑖 = 𝑆𝑗

𝑋𝑗 𝑒𝑙𝑠𝑒

SEGMENTE inclusive SCAN pattern, EREW version: pointer jump
j ← 1

WHILE j < n:

FOR each EP i ∈ 1…𝑛 − 𝑗 in parallel:

IF S[i] = S[i+j] THEN

aux[i] ← Y[i]

 aux[i] ← aux[i] ⊕ Y[i+i]

Y[i+j] ← aux[i]

END IF

END FOR

j ← j × 2

END FOR

6.1 SEGMENTED SCAN

• Example with X = 1,1,1,1,1,1,1,1 and 𝑆 = 0,0,0,0,1,1,1,1

6.1 SEGMENTED SCAN

Here, provide a result per segment!

• Example with 𝑋 = 1,2,3,4,5,6,7,8 and 𝑆 = 1,1,1,1,3,3,3,3

• Two segments, therefore two values: 𝑌 = 10,26

• In PRAM, memory is infinite so no problem

• In practice, it will be necessary to allocate a good size for Y upstream

1.2 SEGMENTED REDUCE

Question: Is the basic version reusable?

• The one using 𝑛/2 PE, then 𝑛/4, then 𝑛/8 etc.

• Let's try it!

• The last step is unnecessary, otherwise it looks the same...

1.2 SEGMENTED REDUCE

• Let's check again, less regular example 𝑆 = 0,0,0,1,1,2,2,2,2

• Palsembleu! What a wooden pipe! Does not work at all!

• You must use the version seen in the previous chapter

1.2 SEGMENTED REDUCE

One step is missing: sending the data to 𝑌!

Several solutions ... one working well:

• For instance, for 𝑆 = 1,1,1,3,3,5,5,5

• The “right" derivative of 𝑆, here 𝐷 = 0,0,1,0,1,0,0,1

• Then inclusive SCAN other the derivative: 𝐷 = 0,0,1,1,2,2,2,3

• At last: SCATTER_IF

1.2 SEGMENTED REDUCE

Right derivative is a MAP …

1.2 SEGMENTED REDUCE

SEGMENTED REDUCE, calculation of the “right“ derivative, EREW mode

FOR each EP i ∈ 1…𝑛 − 1 in parallel: { O(1) }

aux[i] ← S[i+1]

IF S[i] ≠ aux[i] THEN

D[i] ← 1

ELSE

D[i] ← 0

END IF

END FOR

D[n] ← 1 { last value is a start of segment }

Finally, the algorithm becomes

• Inclusive SEGMENTED SCAN: calculation of the sum per segment

• MAP: calculation of the right derivative

• COMPACT!

• The values: result of the SEGMENTED SCAN

• The Predicate: right derivative

1.2 SEGMENTED REDUCE

Example

• 𝑆 = 1,1,1,3,3,5,5,5 and 𝑋 = 1,2,3,4,5,6,7,8

• 𝐷 = 0,0,1,0,1,0,0,1 and after scan: 𝐷 = 0,0,1,1,2,2,2,3

• Size of output is last value: 3

• Segmented inclusive scan of X is Y’= 1,3,6,4,9,6,13,21

• SCATTER_IF leads to Y’= 6,9, 21

1.2 SEGMENTED REDUCE

Important for many sequential or parallel algorithms

• Better sequential complexity: 𝑂 𝑛 log 𝑛

• Considering the previous patterns, can we expect 𝑂(log 𝑛) in

parallel?

3 SORT pattern

Radix being linked to the number basis (2, 8, 10, 16…)

• Idea: sort by bits, from low to high

• Example: 𝑌 = 3,1,2,0,2,0,1,3 , in 2-basis {11,01,10,00,10,00,01,11}

• Sorting on bit 𝑏0 (right one)
• The 0 first, the 1 then… that’s a PARTITION!

• 𝑌 = 11,01,10,00,10,00,01,11 , becomes 𝑌 = {10,00,10,00,11,01,01,11}

• Sorting then on bit b1 (so the left one)
• 𝑌 = 10,00,10,00,11,01,01,11 becomes 𝑌 = {00,00,01,01,10,10,11,11}

• In the end, the table is sorted!

3.1. RADIX SORT

• Bitonic sorting, from 1968

• Construction of a linear binary sorter network

• Needs 𝑂(log 𝑛) binary comparators

• Complex but fun architecture (confer English Wikipedia)

3.2 Sorting based on comparator-exchanger

• Simpler version: stack of comparator-exchanger

• Binary function, which orders its inputs (two outputs, therefore)

• Alternation between comparator-exchanger

• 𝑂(𝑛) comparators

• Nevertheless, it is interesting

• ... in pipeline mode!

3.2 Sorting based on comparator-exchanger

	Diapositive 1 Lecture 2-4: More patterns
	Diapositive 2 1. PARTITION and COMPACT patterns
	Diapositive 3 1.1 PARTITION (or SPLIT) pattern
	Diapositive 4 1.1 PARTITION (or SPLIT) pattern
	Diapositive 5 1.1 PARTITION (or SPLIT) pattern
	Diapositive 6 1.1 PARTITION (or SPLIT) pattern
	Diapositive 7 1.1 PARTITION (or SPLIT) pattern
	Diapositive 8 1.1 PARTITION (or SPLIT) pattern
	Diapositive 9 1.2 COMPACT pattern
	Diapositive 10 1.2 COMPACT pattern
	Diapositive 11 1.2 COMPACT pattern
	Diapositive 12 1.2 COMPACT pattern
	Diapositive 13 1.2 COMPACT pattern
	Diapositive 14 1.2 COMPACT pattern
	Diapositive 15 1.2 COMPACT pattern
	Diapositive 16 2.Segmented patterns
	Diapositive 17 2.1. SEGMENTED SCAN
	Diapositive 18 6.1 SEGMENTED SCAN
	Diapositive 19 6.1 SEGMENTED SCAN
	Diapositive 20 1.2 SEGMENTED REDUCE
	Diapositive 21 1.2 SEGMENTED REDUCE
	Diapositive 22 1.2 SEGMENTED REDUCE
	Diapositive 23 1.2 SEGMENTED REDUCE
	Diapositive 24 1.2 SEGMENTED REDUCE
	Diapositive 25 1.2 SEGMENTED REDUCE
	Diapositive 26 1.2 SEGMENTED REDUCE
	Diapositive 27 3 SORT pattern
	Diapositive 28 3.1. RADIX SORT
	Diapositive 29 3.2 Sorting based on comparator-exchanger
	Diapositive 30 3.2 Sorting based on comparator-exchanger

