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1. PARTITION and COMPACT patterns

• SCAN allows to make many new patterns!

• Two examples:

• PARTITION: move elements to get two sets according to a given predicate

• COMPACT: same, but keeping only one of the two subsets 



• Separate set of values 
• Into two subsets according to a predicate

• Keeping the respective order of each subset

• Example with 𝐸 = 1,2,3,4,5,6,7,8 and 𝑃 = 0,1,0,1,0,1,0,1
• Result is 𝐹 = 2,4,6,8,1,3,5,7

• First the elements validating the predicate,

• ... then the others

• Algorithm based on 4 steps: 
• MAP, Exclusive SCAN, Inclusive REVERSE SCAN, and PERMUTATION

1.1 PARTITION (or SPLIT) pattern



• First step: initialize two lists of positions (of size 𝑛 + 1).
• First for leading values, second for trailing values

1.1 PARTITION (or SPLIT) pattern

PARTITION pattern on PRAM CREW machine: first step
headPosition[1] ← 0 { for the exclusive SCAN! }

FOR EACH EP i ∈ 1…p IN PARALLEL:

IF predicate[i] THEN

headPosition[i+1] ← 1 { size n+1 }

tailPosition[i] ← 0

ELSE

headPosition[i+1] ← 0 { size n+1 }

tailPosition[i] ← 1

END IF

END FOR



• Exclusive SCAN on leading elements (validating predicate)

1.1 PARTITION (or SPLIT) pattern

PARTITION on PRAM CREW machine: step 2, SCAN on the leading elements
j ← 1

WHILE j < n:

FOR each EP i ∈ 1…𝑛 − 𝑗 in parallel:

aux[i] ← headPosition[i]

aux[i] ← aux[i] ⊕ headPosition[i+j]

headPosition[i+j] ← aux[i]

END FOR

j ← j × 2

END FOR



• Inclusive REVERSE SCAN on trailing elements 

1.1 PARTITION (or SPLIT) pattern

PARTITION on PRAM CREW machine : step 3, INCLUSIVE REVERSE SCAN
j ← 1

WHILE j < n:

FOR each EP i ∈ 1…𝑛 − 𝑗 in parallel:

aux[n-(i-1)] ← tailPosition[n-(i-1)]

aux[n-(i-1)] ← 

aux[n-(i-1)] ⊕ tailPosition[n-(i-1+j)] 

tailPosition[n-(i-1+j)] ← aux[n-(i-1)]

END FOR

j ← j × 2

END FOR



• Last step: permutation, via a SCATTER

1.1 PARTITION (or SPLIT) pattern

PARTITION on PRAM CREW machine: step 4, permutation

{ Last step: SCATTER data to their leading and trailing positions 

and tail positions. 

We need a MAP to know the destinations : 

we calculate it on the fly... }

FOR EACH EP i ∈ 1…p IN PARALLEL:

IF predicate[i] THEN

Y[ headPosition[i] + 1 ] ← X[i] { +1 => +Y’First }

ELSE

Y[ n – tailPosition[i] + 1 ] ← X[i] {+1 => +Y’First }

END IF

END FOR



Example with {1,2,3,4,5,6,7,8} and predicates {0,1,0,1,0,1,0,1}

• Initialisation :
• headPosition = {0,0,1,0,1,0,1,0}

• tailPosition = {1,0,1,0,1,0,1,0}

• Exclusive SCAN (via initialisation !)
• headPosition = {0,0,1,1,2,2,3,3}

• Inclusive SCAN (left to right)
• tailPosition = {4,3,3,2,2,1,1,0}

• SCATTER gives

• 𝑌 = {2,4,6,8,1,3,5,7}

1.1 PARTITION (or SPLIT) pattern

Pattern PARTITION on PRAM CREW machine: first step

headPosition[1] ← 0 { pour SCAN exclusif ! }

FOR EACH PE i ∈ 1…p IN PARALLEL:

IF predicat[i] THEN

headPosition[i+1] ← 1 { taille n+1 }

tailPosition[i] ← 0

ELSE

headPosition[i+1] ← 0 { taille n+1 }

tailPosition[i] ← 1

END IF

END FOR

PARTITION on PRAM CREW machine: step 2, SCAN over leading elements
j ← 1

WHILE j < n:

FOR each PE i ∈ 1…𝑛 − 𝑗 in parallel:

aux[i] ← headPosition[i]

aux[i] ← aux[i] ⊕ headPosition[i+j]

headPosition[i+j] ← aux[i]

END FOR

j ← j × 2

END FOR

PARTITION on PRAM CREW machine: step 3, INCLUSIVE SCAN
j ← 1

WHILE j < n:

FOR each PE i ∈ 1…𝑛 − 𝑗 in parallel:

aux[n-(i-1)] ← tailPosition[n-(i-1)]

aux[n-(i-1)] ← 

aux[n-(i-1)] ⊕ tailPosition[n-

tailPosition[n-(i-1+j)] ← aux[n-(i-1)]

END FOR

j ← j × 2

END FOR

PARTITION on PRAM CREW machine: step 4, permutation

{ Dernière étape : SCATTER des données vers leur position en tête 

  et en queue. 

  Il faut un MAP pour connaître les destinations : 

  nous le calculons à la volée …}

FOR EACH PE i ∈ 1…p IN PARALLEL:

IF predicat[i] THEN

Y[ headPosition[i] + 1 ] ← X[i]

ELSE

Y[ n – (tailPosition[i]-1) ] ← X[i]

END IF

END FOR



• Very similar to PARTITION

• Difference 
• Keeps only values whose predicate is True

• Other values ? Disappear

• Variable size result ≤ 𝑛

• Other patterns providing "variable" result: ALLOCATE
• Takes array of values, e.g. {2,4,3}

• Provides array of size 2 + 4 + 3

• Plus, array (option) index start: {0,2,6}

1.2 COMPACT pattern



• Algorithm in 4 steps
• MAP : initialization of the position table
• SCAN on this array
• ALLOCATION of the result array (size ≤ 𝑛)
• SCATTER of the elements whose predicate is true

• SCAN :

• Exclusive? 

• Good position, but not difficult to do ALLOCATE 

• Inclusive?

• Bad position, easy ALLOCATE

1.2 COMPACT pattern



• First step: initialize destination positions

1.2 COMPACT pattern

COMPACT pattern on a PRAM CREW machine

{First initialization step }

FOR EACH EP i ∈ 1…p IN PARALLEL:

IF predicate[i] THEN

position[i] ← 1

ELSE

position[i] ← 0

END IF

END FOR



• Second step: Inclusive SCAN

1.2 COMPACT pattern

COMPACT pattern on a PRAM CREW machine
{ Second step: SCAN on the positions }

j ← 1
WHILE j < n:

FOR each EP i ∈ 1…𝑛 − 𝑗 in parallel:

{ Inclusive SCAN }

aux[i] ← position[i]

aux[i] ← aux[i] ⊕ position[i+j]

position[i+j] ← aux[i]

END FOR

j ← j × 2
END FOR



• ALLOCATION : last SCAN value

1.2 COMPACT pattern

COMPACT pattern on a PRAM CREW machine

{ Allocation }

size ← position[n]



• At last, the conditional permutation (or SCATTER_IF)

1.2 COMPACT pattern

COMPACT pattern on a PRAM CREW machine

{ Last step: conditional SCATTER of the data }

FOR EACH EP i ∈ 1…p IN PARALLEL:

IF predicate[i] THEN

Y[ position[i] ] ← X[i]

END IF

END FOR



Example with 1,2,3,4,5,6,7,8 and 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 = 𝐼𝑠𝑃𝑟𝑖𝑚𝑒

• Initialisation 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0,1,1,0,1,0,1,0

• Inclusive SCAN

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 0,1,2,2,3,3,4,4

• ALLOCATE : 

𝑠𝑖𝑧𝑒 = 4

• SCATTER_IF

𝑌 = {2,3,5,7}

1.2 COMPACT pattern



Example with SPLIT_AND_MERGE sort

• SCAN, REDUCE, … they are not suitable

• Packets must be processed, and done in parallel...
• Possible: data are assembled in contiguous arrays

• Know the beginning of each piece (segment)
• Second array

• Two versions
• REDUCE 

• SCAN (broad sense)

2.Segmented patterns



• Here inclusive version only
• But same idea for exclusive, same for reversed ;-)

• Constraint: apply ⊕ for segment values only.

• Two inputs:

• 𝑋 data.

• 𝑆 segments: here, 1 number per X’s data.

• Operator is modified to apply to two inputs!

2.1. SEGMENTED SCAN

ໄ 𝑋𝑖 , 𝑆𝑖 , 𝑋𝑗 , 𝑆𝑗 = ൝
𝑋𝑖 ⊕𝑋𝑗 𝑖𝑓𝑆𝑖 = 𝑆𝑗

𝑋𝑗 𝑒𝑙𝑠𝑒



SEGMENTE inclusive SCAN pattern, EREW version: pointer jump
j ← 1

WHILE j < n:

FOR each EP i ∈ 1…𝑛 − 𝑗 in parallel:

IF S[i] = S[i+j] THEN

aux[i] ← Y[i]

 aux[i] ← aux[i] ⊕ Y[i+i]

Y[i+j] ← aux[i]

END IF

END FOR

j ← j × 2

END FOR

6.1 SEGMENTED SCAN



• Example with X = 1,1,1,1,1,1,1,1 and 𝑆 = 0,0,0,0,1,1,1,1

6.1 SEGMENTED SCAN



Here, provide a result per segment!

• Example with 𝑋 = 1,2,3,4,5,6,7,8 and 𝑆 = 1,1,1,1,3,3,3,3

• Two segments, therefore two values: 𝑌 = 10,26

• In PRAM, memory is infinite so no problem

• In practice, it will be necessary to allocate a good size for Y upstream

1.2 SEGMENTED REDUCE



Question: Is the basic version reusable?

• The one using 𝑛/2 PE, then 𝑛/4, then 𝑛/8 etc.

• Let's try it!

• The last step is unnecessary, otherwise it looks the same...

1.2 SEGMENTED REDUCE



• Let's check again, less regular example 𝑆 = 0,0,0,1,1,2,2,2,2

• Palsembleu! What a wooden pipe! Does not work at all!

• You must use the version seen in the previous chapter ....

1.2 SEGMENTED REDUCE



One step is missing: sending the data to 𝑌!

Several solutions ... one working well:

• For instance, for 𝑆 = 1,1,1,3,3,5,5,5

• The “right" derivative of 𝑆, here 𝐷 = 0,0,1,0,1,0,0,1

• Then inclusive SCAN other the derivative: 𝐷 = 0,0,1,1,2,2,2,3

• At last: SCATTER_IF

1.2 SEGMENTED REDUCE



Right derivative is a MAP …

1.2 SEGMENTED REDUCE

SEGMENTED REDUCE, calculation of the “right“ derivative, EREW mode

FOR each EP i ∈ 1…𝑛 − 1 in parallel: { O(1) }

aux[i] ← S[i+1]

IF S[i] ≠ aux[i] THEN

D[i] ← 1

ELSE

D[i] ← 0

END IF

END FOR

D[n] ← 1 { last value is a start of segment }



Finally, the algorithm becomes

• Inclusive SEGMENTED SCAN: calculation of the sum per segment

• MAP: calculation of the right derivative 

• COMPACT!

• The values: result of the SEGMENTED SCAN

• The Predicate: right derivative

1.2 SEGMENTED REDUCE



Example

• 𝑆 = 1,1,1,3,3,5,5,5 and 𝑋 = 1,2,3,4,5,6,7,8

• 𝐷 = 0,0,1,0,1,0,0,1 and after scan: 𝐷 = 0,0,1,1,2,2,2,3

• Size of output is last value: 3

• Segmented inclusive scan of X is Y’= 1,3,6,4,9,6,13,21

• SCATTER_IF leads to Y’= 6,9, 21

1.2 SEGMENTED REDUCE



Important for many sequential or parallel algorithms

• Better sequential complexity: 𝑂 𝑛 log 𝑛

• Considering the previous patterns, can we expect 𝑂(log 𝑛) in 

parallel?

3 SORT pattern



Radix being linked to the number basis (2, 8, 10, 16…)

• Idea: sort by bits, from low to high

• Example: 𝑌 = 3,1,2,0,2,0,1,3 , in 2-basis {11,01,10,00,10,00,01,11}

• Sorting on bit 𝑏0 (right one)
• The 0 first, the 1 then… that’s a PARTITION!

• 𝑌 = 11,01,10,00,10,00,01,11 , becomes 𝑌 = {10,00,10,00,11,01,01,11}

• Sorting then on bit b1 (so the left one)
• 𝑌 = 10,00,10,00,11,01,01,11 becomes 𝑌 = {00,00,01,01,10,10,11,11}

• In the end, the table is sorted!

3.1. RADIX SORT



• Bitonic sorting, from 1968

• Construction of a linear binary sorter network

• Needs 𝑂(log 𝑛) binary comparators

• Complex but fun architecture (confer English Wikipedia)

3.2 Sorting based on comparator-exchanger



• Simpler version: stack of comparator-exchanger

• Binary function, which orders its inputs (two outputs, therefore)

• Alternation between comparator-exchanger

• 𝑂(𝑛) comparators

• Nevertheless, it is interesting

• ... in pipeline mode!

3.2 Sorting based on comparator-exchanger
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