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Light is an electromagnetic wave

An electromagnetic wave is a traveling wave that has time-varying electric and magnetic 
fields that are perpendicular to each other and the direction of propagation z.
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Ex = Eo cos(ωt − kz + φο)

E
x
 = Electric field along x at position z at time t

k =  Propagation constant = 2π/λ
λ =  Wavelength
ω =  Angular frequency = 2πυ  (υ = frequency)
E

o
 = Amplitude of the wave

φο = Phase constant; at t = 0 and z = 0, E
x
 may or may not necessarily be zero 

depending on the choice of origin. 

(ωt − kz + φο) = φ = Phase of the wave 

This is a monochromatic plane wave of infinite extent traveling in the positive z 
direction.
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Wavefront

A surface over which the phase of a wave is constant is 
referred to as a wavefront

A wavefront of a plane wave is a plane perpendicular to 
the direction of propagation

The interaction of a light wave with a nonconducting 
medium (conductivity = 0) uses the electric field 
component Ex rather than By.

Optical field refers to the electric field Ex.
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A plane EM wave traveling along z, has the same Ex (or By) at any point in a given xy plane.
All electric field vectors in a given xy plane are therefore in phase. The xy planes are of 
infinite extent in the x and y directions.
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The time and space evolution of a given phase φ, for example that 
corresponding to a maximum field is described by

φ = ωt − kz + φο = constant

During a time interval δt, this constant phase (and hence the 
maximum field) moves a distance δz. The phase velocity of this 
wave is therefore δz/δt. The phase velocity v is

Phase Velocity
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The phase difference between two points separated by 
Δz is simply kΔz

since ωt is the same for each point

If this phase difference is 0 or multiples of 2π then the 
two points are in phase. Thus, the phase difference Δφ 

can be expressed as kΔz or 2πΔz/λ

Phase change over a distance Δz

φ = ωt − kz + φο

Δφ =  kΔz
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Recall that 
cosφ = Re[exp(jφ)]

 
where Re refers to the real part. We then need to take the real 
part of any complex result at the end of calculations. Thus,

 Ex(z,t) = Re[Eoexp(jφο)expj(ωt − kz)]
 or

Ex(z,t) = Re[Ecexpj(ωt − kz)]

where Ec = Eoexp(jφo) is a complex number that represents the 
amplitude of the wave and includes the constant phase 
information φo.

Exponential Notation
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Direction of propagation is indicated with a vector k, called 
the wave vector, whose magnitude is the propagation 
constant, k = 2π/λ. k is perpendicular to constant phase 
planes.

When the electromagnetic (EM) wave is propagating along 
some arbitrary direction k, then the electric field E(r,t) at a 
point r on a plane perpendicular to k is

E (r,t) = Eocos(ωt − k⋅r + φο)

If propagation is along z, k⋅r becomes kz. In general, if k 
has components kx, ky and kz along x, y and z, then from the 
definition of the dot product, k⋅r = kxx + kyy + kzz. 

Wave Vector or Propagation Vector
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Wave Vector k

A traveling plane EM wave along a direction k

E
 
(r,t) = E

o
cos(ωt − k⋅r + φο)
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Maxwell’s Wave Equation

E
x
 = E

o
 cos(ωt − kz + φο)

A plane wave is a solution of Maxwell’s wave equation

Substitute into Maxwell’s Equation to show that this is a solution.

µ0 is the absolute permeability, ε0 is the absolute permittivity, and εr is the relative 
permittivity of the medium.
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Spherical Wave
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Examples of possible EM waves

Optical divergence refers to the angular separation of wave vectors on a given 
wavefront.
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Gaussian Beam

Wavefronts of a Gaussian light beam

The radiation emitted from a laser can be approximated by a Gaussian 
beam.  Gaussian beam approximations are widely used in photonics.
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Gaussian Beam

Intensity = I(r,z) = [2P/(πw2)]exp(−2r2/w2)
θ = w/z = λ/(πw

o
)  2θ = Far field divergence 

The intensity across the beam follows a Gaussian distribution

Beam axis
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The Gaussian Intensity Distribution is Not Unusual

I(r) = I(0)exp(−2r2/w2)

The Gaussian intensity distribution is also used in fiber optics
The fundamental mode in single mode fibers can be approximated with a 

Gaussian intensity distribution across the fiber core
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Gaussian Beam

zo = πwo
2/λ

 2θ = Far field divergence 
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Rayleigh range

Gaussian Beam
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Real and Ideal Gaussian Beams

Definition of M2

19

The Gaussian beam concept is so useful in photonics that a special quantity, called the 
M2-factor, has been introduced to compare a given laser beam to an ideal Gaussian beam.



Real Gaussian Beam

Real beam

Correction note: Page 10 in textbook, Equation (1.11.1), w should be wr as above and wor 
should be squared in the parantheses.
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Two spherical mirrors reflect waves to and from each other. The optical cavity contains a Gaussian 
beam. This particular optical cavity is symmetric and confocal; the two focal points coincide at F.

Gaussian Beam in an Optical Cavity
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Refractive Index 

When an EM wave is traveling in a dielectric 
medium, the oscillating electric field polarizes the 
molecules of the medium at the frequency of the 
wave

The stronger is the interaction between the field 
and the dipoles, the slower is the propagation of the 
wave
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Maxwell’s Wave Equation in an isotropic medium

Ex = Eo cos(ωt − kz + φο)

A plane wave is a solution of Maxwell’s wave equation

The phase velocity of this plane wave in the medium is given by

The phase velocity in vacuum is

25



The relative permittivity εr measures the ease with which the 
medium becomes polarized and hence it indicates the extent of 
interaction between the field and the induced dipoles. 

For an EM wave traveling in a nonmagnetic dielectric medium 
of relative permittivity εr, the phase velocity v is given by

Phase Velocity and εr
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Phase Velocity and εr

Refractive index n 
definition

Refractive Index n
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Low frequency (LF) relative permittivity ε
r
(LF) and refractive index n.
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Optical frequencies
Typical frequencies that are involved in 
optoelectronic devices are in the infrared 
(including far infrared), visible, and UV, and we 
generically refer to these frequencies as optical 
frequencies

Somewhat arbitrary range:

Roughly 1012 Hz to 1016 Hz
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ko Free-space propagation constant (wave vector) 
ko= 2π/λο

λo Free-space wavelength
k Propagation constant (wave vector) in the medium
λ Wavelength in the medium

In noncrystalline materials such as glasses and liquids, the material structure is 
the same in all directions and n does not depend on the direction. The refractive 
index is then isotropic

Refractive Index and Propagation Constant
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Refractive Index and Wavelength

λmedium = λ /n

kmedium = nk
In free space

It is customary to drop the subscript o on k and λ
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Crystals, in general, have non-isotropic, or 
anisotropic, properties

Typically noncrystalline solids such as glasses and 
liquids, and cubic crystals are optically isotropic; 
they possess only one refractive index for all 
directions

Refractive Index and Isotropy
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n depends on the wavelength λ
Dispersion relation: n = n(λ)

Sellmeier Equation

λo = A “resonant 
frequency”

Nat =Number of atoms per unit 
volume
Z = Number of electrons in the 
atom (atomic number)

The simplest electronic polarization gives
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n depends on the wavelength λ

n = n
-2

(hυ)-2 + n
0
 + n

2
(hυ)2 + n

4
(hυ)4

Cauchy dispersion relation
n = n(υ)
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n depends on the wavelength λ
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Group Velocity and Group Index

There are no perfect monochromatic 
waves

We have to consider the way in which 
a group of waves differing slightly in 
wavelength travel along the z-direction
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When two perfectly harmonic waves of frequencies ω − 
δω and ω + δω and wavevectors k − δk and k + δk 
interfere, they generate a wave packet which contains an 
oscillating field at the mean frequency ω that is amplitude 
modulated by a slowly varying field of frequency δω. The 
maximum amplitude moves with a wavevector δk and 
thus with a group velocity that is given by

Group Velocity and Group Index
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Two slightly different wavelength waves traveling in the same direction result in a wave
packet that has an amplitude variation that travels at the group velocity.

Group Velocity
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Group Velocity

Consider two sinusoidal waves that are close in frequency, that is, they have 
frequencies ω − δω and ω + δω. Their wavevectors will be k − δk and k + δk. The 
resultant wave is

E
x
(z,t) = E

o
cos[(ω − δω)t − (k − δk)z] 

+ E
o
cos[(ω + δω)t − (k + δk)z]

By using the trigonometric identity 

cosA + cosB = 2cos[1/
2
(A − B)]cos[1/

2
(A + B)] 

we arrive at

E
x
(z,t) = 2E

o
cos[(δω)t − (δk)z][cos(ωt − kz)]
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This represents a sinusoidal wave of frequency ω . This is 
amplitude modulated by a very slowly varying sinusoidal 
of frequency δω. This system of waves, i.e. the modulation, 
travels along z at a speed determined by the modulating 
term, cos[(δω)t − (δk)z]. The maximum in the field occurs 
when [(δω)t − (δk)z] = 2mπ = constant (m is an integer), 
which travels with a velocity

or

This is the group velocity of the waves because it determines the speed of propagation 
of the maximum electric field along z.

Ex(z,t) = 2Eocos[(δω)t − (δk)z][cos(ωt − kz)]
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The group velocity therefore defines the speed with which energy or information 
is propagated.

ω = 2πc/λo  and k = 2πn/λo, λo is the free space wavelength. 
Differentiate the above equations in red
dω = −(2πc/λo

2)dλo

 
∴
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where n = n(λ) is a function of the wavelength. The group 
velocity vg in a medium is given by, 

This can be written as

Group Velocity and Group Index
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is defined as the group index of the medium

In general, for many materials the refractive index n and hence the group index N
g
 

depend on the wavelength of light. Such materials are called dispersive

Group Index
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Refractive index n and the group index Ng of pure SiO2 (silica) glass as a function of 
wavelength.

Refractive Index and Group Index
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Magnetic Field, Irradiance and Poynting Vector 

The magnetic field (magnetic induction) component By always accompanies Ex in 
an EM wave propagation. 

If v is the phase velocity of an EM wave in an isotropic dielectric medium and n is 
the refractive index, then

where v = (εoεrμo)
−1/2 and n = ε1/2 
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A plane EM wave traveling along k crosses an area A at right angles to the direction of
propagation. In time ∆t, the energy in the cylindrical volume Av∆t (shown dashed) flows 
through A.

EM wave carries energy along the direction of propagation k.
What is the radiation power flow per unit area?
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As the EM wave propagates in the direction of the wavevector k, there is an 
energy flow in this direction. The wave brings with it electromagnetic energy. 

The energy densities in the E
x
 and B

y
 fields are the same,

The total energy density in the wave is therefore ε
o
ε

r
E

x
2. 

Energy Density in an EM Wave
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 If S is the EM power flow per unit area,

 S = Energy flow per unit time per unit area 

In an isotropic medium, the energy flow is in the direction of wave propagation. If 
we use the vectors E and B to represent the electric and magnetic fields in the EM 
wave, then the EM power flow per unit area can be written as

Poynting Vector and EM Power Flow

S = v2εoεrE×B  
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where S, called the Poynting vector, represents the energy flow 
per unit time per unit area in a direction determined by E×B 
(direction of propagation). Its magnitude, power flow per unit 
area, is called the irradiance (instantaneous irradiance, or 
intensity).

The average irradiance is

Poynting Vector and Intensity
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Since v = c/n and εr = n2 we can write

The instantaneous irradiance can only be measured if the power meter can 
respond more quickly than the oscillations of the electric field. Since this is in the 

optical frequencies range, all practical measurements yield the average 
irradiance because all detectors have a response rate much slower than the 

frequency of the wave.

Average Irradiance or Intensity
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Irradiance of a Spherical Wave

Perfect spherical wave
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Irradiance of a Spherical Wave
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A Gaussian Beam

I(r, z) = I
max

exp(−2r2/w2)
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A Gaussian Beam

I(r,z) = [2P
o
/(πw2)]exp(−2r2/w2)

θ = w/z = λ/(πw
o
)  2θ = Far field divergence 

I
max
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A Gaussian Beam
I(r,z) = I

max
exp(−2r2/w2)

Beyond the Rayleigh range
z > zo

Io = Maximum irradiance at 
the center r = 0 at the waist

Corrected
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Power in a Gaussian Beam

Fraction of 
optical power

within 2w
=

Area of a circular thin strip (annulus) with 
radius r is 2πrdr. Power passing through 
this strip is proportional to 
I(r) (2πr)dr

and
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Io = Maximum irradiance at 
the center r = 0 at the waist

Example on

Gaussian Beam

Example 1.4.2 Power and irradiance of a Gaussian beam
Consider a 5 mW HeNe laser that is operating at 633 nm, and has a spot size that is 
1 mm. Find the maximum irradiance of the beam and the axial (maximum) 
irradiance at 25 m from the laser. 

Solution
The 5 mW rating refers to the total optical power P

o
 available, and 633 nm is 

the free space output wavelength λ. Apply

I
o
 = 1.273 W cm−2

∴

Corrected
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Example on

Gaussian Beam

The Rayleigh range z
o
 was calculated previously, but we can recalculate

z
o
 = πw

o
2/λ = π(0.5×10−3 m)2/(633×10−9 m) = 1.24 m.

The beam width at 25 m is

2w = 2w
o
[1 + (z/z

o
)]1/2 = 20 mm

The irradiance at the beam axis is
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Snell’s Law or Descartes’s Law?
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Snell's Law
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A light wave traveling in a medium with a greater refractive index (n
1
 > n

2
) suffers 

reflection and refraction at the boundary. (Notice that λ
t
 is slightly longer than λ.)

Derivation of Snell’s Law
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We can use constructive interference to show that there can only 
be one reflected wave which occurs at an angle equal to the 
incidence angle. The two waves along Ai and Bi are in phase. 

When these waves are reflected to become waves Ar and Br then 
they must still be in phase, otherwise they will interfere 
destructively and destroy each other. The only way the two 
waves can stay in phase is if θr = θi. All other angles lead to the 
waves Ar and Br being out of phase and interfering destructively.

Snell’s Law
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Unless the two waves at A′ and B′ still have the same phase, there will 
be no transmitted wave. A′ and B′ points on the front are only in phase 
for one particular transmitted angle, θt.

It takes time t for the phase at B on wave Bi to reach B′
BB′ = v1t = ct/n1  

During this time t, the phase A has progressed to A′
AA′ = v2t = ct/n2 

A′ and B′ belong to the same front just like A and B so that AB is 
perpendicular to ki in medium 1 and A′B′ is perpendicular to kt in 
medium 2. From geometrical considerations, 

AB′ = BB′/sinθi and AB′ = AA′/sinθt so that

Snell’s Law
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or 

This is Snell's law which relates the angles of incidence and refraction to the 
refractive indices of the media. 
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When n
1
 > n

2
 then obviously the transmitted angle is greater than the incidence 

angle as apparent in the figure. When the refraction angle θ
t
 reaches 90°, the 

incidence angle is called the critical angle θ
c
 which is given by 
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When the incidence angle θi exceeds θc then there is no 
transmitted wave but only a reflected wave. The latter 
phenomenon is called total internal reflection (TIR). TIR 
phenomenon that leads to the propagation of waves in a 
dielectric medium surrounded by a medium of smaller 
refractive index as in optical waveguides, e.g. optical fibers. 

Although Snell's law for θi > θc shows that sinθt > 1 and 
hence θt is an "imaginary" angle of refraction, there is 
however an attenuated wave called the evanescent wave. 

Snell’s Law
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Light wave traveling in a more dense medium strikes a less dense medium. 
Depending on the incidence angle with respect to θc, which is determined by the 

ratio of the refractive indices, the wave may be transmitted (refracted) or reflected. 
(a) θi < θc (b) θi = θc (c) θi > θc and total internal reflection (TIR).

Total Internal Reflection
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Prisms
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Lateral Displacement
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Example: Lateral Displacement
Lateral displacement of light, or, beam displacement, occurs when a beam if light passes 
obliquely through a plate of transparent material, such as a glass plate. When a light beam is 
incident on a plate of transparent material of refractive index n, it emerges from the other 
side traveling parallel to the incident light but displaced from it by a distance d, called lateral 
displacement. Find the displacement d in terms of the incidence angle the plate thickness L. 
What is d for a glass of n = 1.600, L = 10 mm if the incidence angle is 45° 

Solution
The displacement d = BC = ABsin(θ

i
 − θ

t
). Further, L/AB = cosθ

t
 so that combining these 

two equation we find
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Example: Lateral Displacement (Continued)
Solution (Continued)

Snell's law nsinθ
t
 = n

o
sinθ

i

Expand sin(θi − θt) and eliminate sinθt and sinθt 
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Example: Lateral Displacement (Continued)
Solution (Continued)

L =  10 mm

θi = 45° n = 1.600 no = 1

d = 3.587 mm
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Light travels by total internal reflection in optical fibers

An optical fiber link for transmitting digital information in communications. The fiber core
has a higher refractive index so that the light travels along the fiber inside the fiber core
by total internal reflection at the core-cladding interface.
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A small hole is made in a plastic bottle full of water to generate a water jet. When the hole is illuminated with a laser 
beam (from a green laser pointer), the light is guided by total internal reflections along the jet to the tray. The light 
guiding by a water jet was first demonstrated by Jean-Daniel Colladan, a Swiss scientist (Water with air bubbles was 
used to increase the visibility of light. Air bubbles scatter light.) [Left: Copyright: S.O. Kasap, 2005] [Right: Comptes 
Rendes, 15, 800–802, October 24, 1842; Cnum, Conservatoire Numérique des Arts et Métiers, France
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 Fresnel's Equations

Light wave traveling in a more dense medium strikes a less dense medium. The plane of incidence is the plane of the 
paper and is perpendicular to the flat interface between the two media. The electric field is normal to the direction of 

propagation. It can be resolved into perpendicular and parallel components.
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Describe the incident, reflected and refracted waves by 
the exponential representation of a traveling plane 
wave, i.e.

Ei = Eioexpj(ωt − ki⋅r) Incident wave

Er = Eroexpj(ωt − kr⋅r) Reflected wave

Et = Etoexpj(ωt − kt⋅r) Transmitted wave

 Fresnel's Equations

These are traveling plane waves
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where r is the position vector, the wave vectors ki, kr 
and kt describe the directions of the incident, 
reflected and transmitted waves and Eio, Ero and Eto 
are the respective amplitudes. 

Any phase changes such as φr and φt in the reflected 
and transmitted waves with respect to the phase of 
the incident wave are incorporated into the complex 
amplitudes, Ero and Eto. Our objective is to find Ero 
and Eto with respect to Eio. 

 Fresnel's Equations
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The electric and magnetic fields anywhere on the 
wave must be perpendicular to each other as a 
requirement of electromagnetic wave theory. This 
means that with E// in the EM wave we have a 
magnetic field B

⊥
 associated with it such that, B

⊥
 

= (n/c)E//. Similarly E
⊥

 will have a magnetic field 
B// associated with it such that B// = (n/c)E

⊥
.

We use boundary conditions

Etangential(1) = Etangential(2)  

 Fresnel's Equations
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Non-magnetic media (relative permeability, μr = 1),

Btangential(1) = Btangential(2) 

Using the above boundary conditions for the fields at y = 
0, and the relationship between the electric and magnetic 
fields, we can find the reflected and transmitted waves in 
terms of the incident wave. 

The boundary conditions can only be satisfied if the 
reflection and incidence angles are equal, θr = θi and the 
angles for the transmitted and incident wave obey Snell's 
law, n1sinθ1 = n2sinθ2

 Fresnel's Equations
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 Fresnel's Equations

Incident wave Ei = Eioexpj(ωt − ki⋅r)

Reflected wave Er = Eroexpj(ωt − kr⋅r)

Transmitted wave Et = Etoexpj(ωt − kt⋅r)
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Applying the boundary conditions to the EM wave going 
from medium 1 to 2, the amplitudes of the reflected and 
transmitted waves can be readily obtained in terms of n1, 
n2 and the incidence angle θi alone. These relationships 
are called Fresnel's equations. If we define n = n2/n1, as 
the relative refractive index of medium 2 to that of 1, then 
the reflection and transmission coefficients for E

⊥ are,

 Fresnel's Equations
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There are corresponding coefficients for the E
//

 fields with corresponding 
reflection and transmission coefficients, r

//
 and t

//
,

 Fresnel's Equations
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Further, the above coefficients are related by

r// + nt// = 1 and r⊥ + 1 = t⊥ 

For convenience we take Eio to be a real number so that 
phase angles of r⊥ and t⊥ correspond to the phase changes 
measured with respect to the incident wave. 

For normal incidence (θi = 0) into Fresnel's equations we 
find,

 Fresnel's Equations

89



Internal reflection

(a) Magnitude of the reflection coefficients r// and r
⊥

 vs. angle of incidence θi for n1 = 1.44 and
n2 = 1.00. The critical angle is 44°. 

(b) The corresponding changes ϕ// and ϕ
⊥

 vs. incidence angle.
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We find a special incidence angle, labeled as θp, by solving 
the Fresnel equation for r// = 0. The field in the reflected 
wave is then always perpendicular to the plane of 
incidence and hence well-defined. This special angle is 
called the polarization angle or Brewster's angle,

Reflection and Polarization Angle

For both n
1
 > n

2
 

or  n
1
 < n

2
.
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Polarized Light

A linearly polarized wave has its electric field oscillations defined along a 
line perpendicular to the direction of propagation, z. The field vector E and z 
define a plane of polarization. 
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Brewster's angle

Reflected light at θi = θp has only E⊥

for both n1 > n2 or n1 < n2.

E⊥
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In linearly polarized light, however, the field oscillations 
are contained within a well defined plane. Light emitted 
from many light sources such as a tungsten light bulb or 
an LED diode is unpolarized and the field is randomly 
oriented in a direction that is perpendicular to the 
direction of propagation.

At the critical angle and beyond (past 44° in the figure), 
i.e. when θi ≥ θc, the magnitudes of both r// and r⊥ go to 
unity so that the reflected wave has the same amplitude as 
the incident wave. The incident wave has suffered total 
internal reflection, TIR. 

 Total Internal Reflection
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When θi > θc, in the presence of TIR, the reflection coefficients 
become complex quantities of the type 

r
⊥

 = 1⋅exp(−jφ
⊥

) and r// = 1⋅exp(−jφ//)
 
with the phase angles φ

⊥
 and φ// being other than zero or 180°. 

The reflected wave therefore suffers phase changes, φ
⊥

 and φ//, 
in the components E

⊥
 and E//. These phase changes depend on 

the incidence angle, and on n1 and n2.

The phase change φ
⊥

 is given by

Phase change upon total internal reflection
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For the E// component, the phase change φ// is given by

Phase change upon total internal reflection

96



The reflection coefficients r// and r
⊥

 versus angle of incidence θi for n1 = 1.00 and n2 = 1.44.

External Reflection
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In internal reflection (n1 > n2), the amplitude of the 
reflected wave from TIR is equal to the amplitude of 
the incident wave but its phase has shifted.

What happens to the transmitted wave when θi > θc? 

According to the boundary conditions, there must 
still be an electric field in medium 2, otherwise, the 
boundary conditions cannot be satisfied. When θi > 
θc, the field in medium 2 is attenuated (decreases 
with y, and is called the evanescent wave.

Evanescent Wave
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When θi > θc, for a plane wave that is reflected, there is an evanescent wave at the boundary
propagating along z.
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where k
iz
 = k

i
sinθ

i
 is the wavevector of the incident wave along the z-axis, and α

2
 

is an attenuation coefficient for the electric field penetrating into medium 2

Evanescent wave when plane waves are incident and reflected
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Penetration depth of evanescent wave

α2 =  Attenuation coefficient for the electric field penetrating into medium 2

The field of the evanescent wave is e−1 in medium 2 when 

y = 1/α
2
 = δ  =  Penetration depth

101



Goos-Hänchen Shift

Δz = 2δtanθ
i

102



Beam Splitters
Frustrated Total Internal Reflection (FTIR)

(a) A light incident at the 
long face of a glass prism 
suffers TIR; the prism 
deflects the light.

(b)  Two prisms separated by a thin low 
refractive index film forming a beam-splitter 
cube. The incident beam is split into two 
beams by FTIR. 
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When medium  B is thin (thickness d  is small), the field penetrates from the AB 
interface into medium B and reaches BC interface, and gives rise to a transmitted 
wave in medium C.  The effect is the tunneling of the incident beam in A through B 
to C. The maximum field Emax of the evanescent wave in B decays in B along y and 
but is finite at the BC boundary and excites the transmitted wave.

Optical Tunneling
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Two prisms separated by a thin low 
refractive index film forming a 
beam-splitter cube. The incident beam is 

split into two beams by FTIR. 

Beam splitter cubes 
(Courtesy of CVI Melles 
Griot)
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Optical Tunneling

Light propagation along an 
optical guide by total 
internal reflections

Coupling of laser light into a thin layer 
- optical guide - using a prism. The 

light propagates along the thin layer.
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Light approaches the boundary from the lower index side, 
n1 < n2

This is external reflection. 
Light becomes reflected by the surface of an optically 
denser (higher refractive index) medium.

r
⊥

 and r// depend on the incidence angle θi. At normal 
incidence, r

⊥
 and r// are negative. In external reflection at 

normal incidence there is a phase shift of 180°. r// goes 
through zero at the Brewster angle, θp. At θp, the reflected 
wave is polarized in the E

⊥
 component only. 

Transmitted light in both internal reflection (when θi < θc) 
and external reflection does not experience a phase shift.

External Reflection
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Intensity, Reflectance and Transmittance

Reflectance R measures the intensity of the reflected light with respect to that of 
the incident light and can be defined separately for electric field components 
parallel and perpendicular to the plane of incidence. The reflectances R⊥ and R// 
are defined by

and 
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At normal incidence

Since a glass medium has a refractive index of 
around 1.5 this means that typically 4% of the 
incident radiation on an air-glass surface will be 
reflected back. 
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Example: Reflection at normal incidence. Internal 
and external reflection

Consider the reflection of light at normal incidence on a boundary 
between a glass medium of refractive index 1.5 and air of 
refractive index 1. 

(a) If light is traveling from air to glass, what is the reflection 
coefficient and the intensity of  the reflected light with respect to 
that of the  incident light?

(b) If light is traveling from glass to air, what is  the reflection 
coefficient and the intensity of  the reflected light with respect to 
that of the incident light?

(c) What is the polarization angle in the external reflection in a 
above? How would you make a polaroid from this? 
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Solution
(a) The light travels in air and becomes partially reflected at 
the surface of the glass which  corresponds to external 
reflection. Thus n1 = 1 and n2 = 1.5. Then, 

This is negative which means that there is a 180° phase shift. The 
reflectance (R), which gives the fractional reflected power, is

R = r//
2 = 0.04 or 4%. 
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(b)  The light travels in glass and becomes partially 
reflected at the glass-air interface which 
corresponds to internal reflection. n1 = 1.5 and n2 = 
1. Then,

There is no phase shift. The reflectance is again 0.04 or 4%. In both cases 
(a)  and (b) the amount of reflected light is the same.
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(c) Light is traveling in air and is incident on the 
glass surface at the polarization angle. Here n1 = 1, 
n2 = 1.5 and tanθp = (n2/n1) = 1.5 so that θp = 56.3°.

This type of pile-of-plates polarizer was invented by 
Dominique F.J. Arago in 1812

56.3o
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Transmittance T relates the intensity of the transmitted 
wave to that of the incident wave in a similar fashion to the 

reflectance. 

However the transmitted wave is in a different medium 
and further its direction with respect to the boundary is 

also different due to refraction. 

For normal incidence, the incident and transmitted beams 
are normal so that the equations are simple:

Transmittance
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or

Further, the fraction of light reflected and fraction transmitted must add to unity. 
Thus R + T = 1.

Transmittance
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Reflection and Transmission – An Example
Question  A light beam traveling in air is incident on a glass plate of refractive index 
1.50 . What is the Brester or polarization angle? What are the relative intensities of 
the reflected and transmitted light for the polarization perpendicular and parallel to 
the plane of incidence at the Brewster angle of incidence?

Solution  Light is traveling in air and is incident on the glass surface at the polarization 
angle θ

p
. Here n

1
 = 1, n

2
 = 1.5 and tanθ

p
 = (n

2
/n

1
) = 1.5 so that θ

p
 = 56.31°. We now have 

to use Fresnel's equations to find the reflected and transmitted amplitudes. For the 
perpendicular polarization

On the other hand,  r
//

 = 0.  The reflectances R
⊥

 = | r
⊥

|2 = 0.148 and R// = |r//|
2 = 0 so that 

R = 0.074, and has no parallel polarization in the plane of incidence. Notice the negative 
sign in r

⊥
, which indicates a phase change of π. 
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Reflection and Transmission – An Example

Notice that r
//

 + nt
//

 = 1 and r
⊥

 + 1 = t
⊥

, as we expect. 
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Reflection and Transmission – An Example

Clearly, light with polarization parallel to the plane of incidence has greater intensity. 

If we were to reflect light from a glass plate, keeping the angle of incidence at 56.3°, then 
the reflected light will be polarized with an electric field component perpendicular to the 
plane of incidence. The transmitted light will have the field greater in the plane of 
incidence, that is, it will be partially polarized. By using a stack of glass plates one can 
increase the polarization of the transmitted light. (This type of pile-of-plates polarizer was 
invented by Dominique F.J. Arago in 1812.)

To find the transmittance for each polarization, we need the refraction angle θ
t
.  From 

Snell's law, n
1
sinθ

i
 = n

t
sinθ

t
 i.e. (1)sin(56.31°) = (1.5)sinθt, we find θ

t
 = 

33.69°.  
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Example: Reflection of light from a less dense 
medium (internal reflection)

A ray of light which is traveling in a glass medium of refractive index n1 = 1.460 
becomes incident on a less dense glass medium of refractive index n2 = 1.440. 
The free space wavelength (λ) of the light ray is

 
1300 nm.

(a) What should be the minimum incidence angle for TIR? 
(b) What is the phase change in the reflected wave when θi = 87° and when 
θi = 90°? 
(c) What is the penetration depth of the evanescent wave into medium 2 when 

θi = 87°  and when θi = 90°? 
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Solution

(a) The critical angle θc for TIR is given by
 

sinθc = n2/n1 = 1.440/1.460 so that θc = 80.51°

(b) Since the incidence angle θi > θc there is a phase 
shift in the reflected wave. The phase change in Er,⊥ 
is given by φ

⊥
. 

Using n1 = 1.460, n2 =1.440 and θi = 87°,
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        = 2.989 = tan[1/2(143.0°)] 

so that the phase change φ
⊥

 = 143°. 

For the E
r,//

 component, the phase change is
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so that

tan(1/2φ// + 1/2π) = (n1/n2)
2tan(φ

⊥
/2) =

(1.460/1.440)2tan(1/2143°)

which gives φ// = 143.95° − 180° or −36.05°

Repeat with θi = 90° to find φ
⊥

 = 180° and φ// = 0°.

Note that as long as θi > θc, the magnitude of the reflection 
coefficients are unity. Only the phase changes.
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(c) The amplitude of the evanescent wave as it 
penetrates into medium 2 is

Et,⊥(y,t) ∝ Eto,⊥exp(–α2y)

The field strength drops to e-1 when y = 1/α2 = δ, which is 
called the penetration depth. The attenuation constant α2 is
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i.e.

= 1.10×106 m-1.

The penetration depth is,

δ = 1/α
2
 = 1/(1.104×106 m) = 9.06×10-7 m, or 0.906 μm  

For 90°, repeating the calculation, α
2
 = 1.164×106 m-1, so that 

δ = 1/α
2
 = 0.859 μm  

The penetration is greater for smaller incidence angles
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Example: Antireflection coatings on solar cells

When light is incident on the surface of a semiconductor it 
becomes partially reflected. Partial reflection is an 
important energy loss in solar cells. 

The refractive index of Si is about 3.5 at wavelengths 
around 700 - 800 nm. Reflectance with n1(air) = 1 and 
n2(Si) ≈ 3.5 is 
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30% of the light is reflected and is not available for conversion to electrical 
energy; a considerable reduction in the efficiency of the solar cell.

Illustration of how an antireflection coating reduces the reflected light intensity. 
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Light is first incident on the air/coating surface. Some of it 
becomes reflected as A in the figure. Wave A has 
experienced a 180° phase change on reflection because this 
is an external reflection. The wave that enters and travels 
in the coating then becomes reflected at the 
coating/semiconductor surface. 

We can coat the surface of the 
semiconductor device with a thin layer of a 
dielectric material, e.g. Si

3
N

4
 (silicon nitride) 

that has an intermediate refractive index. 

n
1
(air) = 1, n

2
(coating) ≈ 1.9 and n

3
(Si) = 3.5
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Since λ
c
 = λ /n

2
, where λ is the free-space wavelength, the phase difference 

Δφ between A and B is (2πn
2
/λ)(2d). To reduce the reflected light, A and B 

must interfere destructively. This requires the phase difference to be π or 
odd-multiples of π, mπ where m = 1,3,5,… is an odd-integer. Thus

This reflected wave B, also suffers a 
180° phase change since n

3
 > n

2
. 

When B reaches A, it has suffered a 
total delay of traversing the thickness d 
of the coating twice. The phase 
difference is equivalent to k

c
(2d) 

where k
c
 = 2π/λ

c
 is the propagation 

constant in the coating, i.e. k
c
 =2π/λ

c
 

where λ
c
 is the wavelength in the 

coating. 
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or

The thickness of the coating must be odd-multiples of the quarter wavelength 
in the coating and depends on the wavelength. 
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To obtain good destructive interference between waves A 
and B, the two amplitudes must be comparable. We need 
(proved later) n2 = √(n1n3). When n2 = √(n1n3) then the 
reflection coefficient between the air and coating is equal 
to that between the coating and the semiconductor. For a 
Si solar cell, √(3.5) or 1.87. Thus, Si3N4 is a good choice as 
an antireflection coating material on Si solar cells.

Taking the wavelength to be 700 nm, 

d = (700 nm)/[4 (1.9)] = 92.1 nm or odd-multiples of d.
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Reflection is almost entirely extinguished
However, only at 700 nm.
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Dielectric Mirror or Bragg Reflector

Schematic illustration of the principle of the dielectric mirror with many low and high
refractive index layers

132



Dielectric mirrors

Schematic illustration of the principle of the dielectric mirror with many low and high
refractive index layers
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A dielectric mirror has a stack of dielectric layers of alternating 
refractive indices. Let n1 (= nH) > n2 (= nL)

Layer thickness d = Quarter of wavelength or λlayer/4 
λlayer = λo/n; λo is the free space wavelength at which the mirror 
is required to reflect the incident light, n = refractive index of 
layer. 

Reflected waves from the interfaces interfere constructively and 
give rise to a substantial reflected light. If there are sufficient 
number of layers, the reflectance can approach unity at λo. 
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r12 for light in layer 1 being reflected at the 1-2 boundary is 
r12 = (n1 − n2)/(n1 + n2) and is a positive number indicating no phase 
change. 
r21 for light in layer 2 being reflected at the 2-1 boundary is 
r21 = (n2 − n1)/(n2 + n1) which is –r12 (negative) indicating a π phase change. 
The reflection coefficient alternates in sign through the mirror
The phase difference between A and B is 

0 + π + 2k1d1 = 0 + π + 2(2πn1/λo)(λo/4n1) =  2π. 

Thus, waves A and B are in phase and interfere constructively.  
Dielectric mirrors are widely used in modern vertical cavity surface 
emitting semiconductor lasers.
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Dielectric Mirror
or Bragg Reflector

Δλ = Reflectance bandwidth 
(Stop-band for transmittance)
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Dielectric Mirror or Bragg Reflector

Consider an “infinite stack”

This is a “unit cell”
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Dielectric Mirror or Bragg Reflector

For reflection, the phase difference between A and B must be 

2k1d1 + 2k2d2 =  m(2π) 

2(2πn1/λ)d1 + 2(2πn2/λ)d2 =  m(2π)

n
1
d

1
 + n

2
d

2
 =  mλ/2
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Dielectric Mirror or Bragg Reflector

n
1
d

1
 + n

2
d

2
 = λ/2

d2 = λ/4n2
d1 = λ/4n1

Quarter-Wave Stack
d

1
 = λ/4n

1
 and d

2
 = λ/4n

2
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Dielectric Mirror or Bragg Reflector
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Example: Dielectric Mirror
A dielectric mirror has quarter wave layers consisting of Ta

2
O

5
 with n

H
 =  1.78 and SiO

2
 with 

n
L
 = 1.55 both at  850 nm, the central wavelength at which the mirror reflects light. The 

substrate is Pyrex glass with an index n
s
 = 1.47  and the outside medium is air with n

0
 = 1. 

Calculate the maximum reflectance  of the mirror when the number N of double layers is 4 
and 12. What would happen if you use TiO

2
 with n

H
 = 2.49, instead of Ta

2
O

5
? Consider the N 

= 12 mirror. What is the bandwidth and what happens to the reflectance if you interchange 
the high and low index layers? Suppose we use a Si wafer as the substrate, what happens to 
the maximum reflectance?

Solution
n

0
 = 1 for air,  n

1
 = n

H
 = 1.78, n

2
 = n

L
 = 1.55, n

3
 = n

s
 = 1.47, N = 4. For 4 pairs of 

layers, the maximum reflectance R
4
 is
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Solution
N = 12. For 12 pairs of layers, the maximum reflectance R

12
 is

Now use TiO2 for the high-n layer with n1 = nH = 2.49, 
R4 = 94.0% and R12 = 100% (to two decimal places). 

The refractive index contrast is important. For the TiO2-SiO2 stack we only need 4 double 
layers to get roughly the same reflectance as from 12 pairs of layers of Ta2O5-SiO2. If we 
interchange nH and nL in the 12-pair stack, i.e. n1 = nL and n2 = nH, the Ta2O5-SiO2 reflectance 
falls to 80.8% but the TiO2-SiO2 stack is unaffected since it is already reflecting nearly all the 
light. 
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Solution
We can only compare bandwidths Δλ for "infinite" stacks (those with R ≈ 100%) 
For the TiO

2
-SiO

2
 stack

For the Ta
2
O

5
-SiO

2
 infinite stack, we get Δλ =74.8 nm

As expected Δλ is narrower for the smaller contrast stack
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Complex Refractive Index
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Complex Refractive Index
Consider k = k′ − jk″

E = Eoexp(−k″z)expj(ωt − k′z)

I ∝|E|2 ∝ exp(−2k″z) 

We know from EM wave theory
εr = εr′ − jεr″  and Ν = εr

1/2 

Ν= n − jK = k/ko = (1/ko)[k′ − jk″] 
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The complex refractive index N 
with a real part n and imaginary 
part K is defined as the ratio of 
the complex propagation constant 
in a medium to propagation 
constant in free space.



Reflectance
εr = εr′ − jεr″  and  Ν = εr

1/2 

Ν = n − jK

n2 − K2 = εr′   and 2nK = εr″
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The real part n is simply and generally called the refractive index and K is 
called the extinction coefficient.



Complex Refractive Index for CdTe

CdTe is used in various applications such as lenses, wedges, prisms, beam splitters, 
antireflection coatings, windows etc operating typically in the infrared region up to 25 
μm. It is used as an optical material for low power CO

2
 laser applications. 
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Complex Refractive Index

n2 − K2 = εr′ and 2nK = εr″

88 μm
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Example: Complex Refractive Index for CdTe
Calculate the absorption coefficient α and the reflectance R of CdTe at the Reststrahlen peak, 
and also at 50 μm. What is your conclusion?

Solution: At the Reststrahlen peak, λ
 
≈ 70 μm, K ≈ 6, and n ≈ 4. The free-space 

propagation constant is

k
o
 = 2π/λ = 2π/(70×10−6 m) = 9.0×104 m−1 

The absorption coefficient α is 2k,

α = 2k″ = 2k
o
K = 2(9.0×104 m−1)(6) = 1.08×106 m−1

which corresponds to an absorption depth 1/α of about 0.93 micron. 
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Solution continued: At the Reststrahlen peak, λ
 
≈ 70 μm, K ≈ 6, and n ≈ 4, so that

At λ = 50 μm, K ≈ 0.02, and n ≈ 2.  Repeating the above calculations we get 

α =  5.0 ×103 m−1

R = 0.11 or 11 %

There is a sharp increase in the reflectance from 11 to 72% as we approach the Reststrahlen 
peak
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Temporal and Spatial Coherence

(a) A sine wave is perfectly coherent and contains a well-defined frequency υo. (b) A finite 
wave train lasts for a duration Δt  and has a length l. Its frequency spectrum extends over 
Δυ = 2/Δt. It has a coherence time Δt and a coherence length λ.  (c) White light exhibits 
practically no coherence.
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Temporal and Spatial Coherence

FWHM spreads
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Temporal and Spatial Coherence

(a) Two waves can only interfere over the time interval Δt.  (b) Spatial coherence involves 
comparing the coherence of waves emitted from different locations on the source. (c) An 
incoherent beam
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Temporal and Spatial Coherence

Δt = coherence time 

l = cΔt = coherence length

For a Gaussian light pulse

Spectral width Pulse duration
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Temporal and Spatial Coherence

Δt = coherence time 

l = cΔt = coherence length
Na lamp, orange radiation at 589 nm has spectral width Δυ ≈ 
5×1011 Hz. 

Δt ≈ 1/ Δυ = 2×10-12 s or 2 ps, 

and its coherence length l = cΔt,

l = 6×10-4 m or 0.60 mm. 

He-Ne laser operating in multimode has a spectral width around 
1.5×109 Hz, Δt ≈ 1/Δυ = 1/1.5×109 s or 0.67 ns

l = cΔt = 0.20 m or 200 mm. 
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Interference

E
1
 = E

o1
sin(ωt – kr

1
 –φ

1
) and E

2
 = E

o2
sin(ωt – kr

2
 –φ

2
)

Interference results in E = E1 + E2 
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Interference

Resultant intensity I is

I = I
1
 + I

2
 + 2(I

1
I
2
)1/2cosδ

δ =  k(r
2
 – r

1
)  +  (φ

2
 – φ

 1
)

I
max

 = I
1
 + I

2
 + 2(I

1
I
2
)1/2      and I

min
 = I

1
 + I

2
 − 2(I

1
I
2
)1/2

If the interfering beams have equal irradiances, then

Phase difference due to optical path difference

Constructive interference Destructive interference

I
min

 = 0I
max

 = 4I
1
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Interference between coherent waves

Resultant intensity I is

I = I
1
 + I

2
 + 2(I

1
I
2
)1/2cosδ

δ =  k(r
2
 – r

1
)  +  (φ

2
 – φ

 1
)

Interference between incoherent waves

I = I
1
 + I

2
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Interference between coherent waves
Resultant intensity I is

I = I
1
 + I

2
 + 2(I

1
I
2
)1/2cosδ

δ =  k(r
2
 – r

1
)  +  (φ

2
 – φ

 1
)
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Optical Resonator

Fabry-Perot
Optical Cavity

This is a tunable large aperture (80 mm) etalon with 
two end plates that act as reflectors. The end plates 
have been machined to be flat to λ/110. There are 
three piezoelectric transducers that can tilt the end 
plates and hence obtain perfect alignment.  
(Courtesy of Light Machinery)
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Optical Resonator

Fabry-Perot Optical Cavity

Schematic illustration of the Fabry-Perot optical cavity and its properties. (a) 
Reflected waves interfere. (b) Only standing EM waves, modes,  of certain 

wavelengths are allowed in the cavity. (c) Intensity vs. frequency for various modes. 
R is mirror reflectance and lower R means higher loss from the cavity.

Note: The two curves are sketched so that the maximum intensity is unity
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Each allowed EM oscillation
is a cavity mode

Optical Resonator

Fabry-Perot Optical Cavity
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Optical Resonator Fabry-Perot
Optical Cavity

A + B = A + Ar 2exp(−j2kL)

E
cavity

 = A + B + … = A + Ar2exp(−j2kL) + Ar4exp(−j4kL) + Ar6exp(−j6kL) + …

Maxima at  k
m
L =  mπ

m = 1,2,3,…integer

θ

sinθ

π
2π

3π
π/2
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Optical Resonator Fabry-Perot Optical Cavity

Maxima at  k
m
L =  mπ

m = 1,2,3,…integer

m(λ
m
/2) = L

(2π/λ
m
)L =  mπ
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υ
m
 = m(c/2L) = mυ

f
 =

 
Mode frequency

m = integer, 1,2,…

υ
f
 =free spectral range = c/2L = Separation of modes

F = Finesse
R = Reflectance (R > 0.6)
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Fused silica etalon 
(Courtesy of Light Machinery)

A 10 GHz air spaced etalon 
with 3 zerodur spacers. 
(Courtesy of Light Machinery)
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Fabry-Perot etalons can be made to operate from UV to IR wavelengths with optical 
cavity spacings from a few microns to many centimeters
(Courtesy of IC Optical Systems Ltd.)
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Quality factor Q is similar to the Finesse F
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Optical Resonator is also an optical filter

Only certain wavelengths (cavity modes) are transmitted
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Introduction to Diffraction

Airy rings are a diffraction pattern clearly visible when light passes through a circular 
aperture

● The diffracted beam does NOT correspond to the shadow of the aperture
● Instead the light imaged passed the aperture is the result of both light passing 

through the aperture and light scattered off the edges. The scattered light generates 
an interference pattern in the image

● Diffracted light from a distance generates the image in a planer wavefront: 
Fraunhofer Diffraction

● Diffracted light from a near by aperture images the surface with significant 
wavefront curvature: Fresnel Diffraction

A light beam incident on a small 
circular aperture becomes diffracted 
and its light intensity pattern after 
passing through the aperture is a 
diffraction pattern with circular bright 
rings (called Airy rings). If the screen 
is far away from the aperture, this 
would be a Fraunhofer diffraction 
pattern.
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Introduction to Diffraction

(a) Huygens-Fresnel principles states that each point in the aperture becomes a 
source of secondary waves (spherical waves). The spherical wavefronts are 
separated by λ. The new wavefront is the envelope of the all these spherical 
wavefronts. 
(b) Another possible wavefront occurs at an angle θ to the z-direction which is a 
diffracted wave.
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Introduction to Diffraction

(a) The aperture is divided into N number of 
point sources each occupying δy with 
amplitude ∝ δy. 
(b) The intensity distribution in the received 
light at the screen far away from the aperture: 
the diffraction pattern

Light emitted from a point source

The single slit diffraction equation yields an intensity

With zero intensity points at

where D is the diameter of the aperture
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Image Resolution

Resolution of imaging systems is limited by diffraction effects. As points S1 and S2 get closer, 
eventually the Airy disks overlap so much that the resolution is lost.

According to the Rayleigh criterion, the two spots are just observable when the principle maximum of 
one diffraction pattern coincides with the minimum of another. This minimum is obtained by the angular 
radius of the Airy disk, with D is the diameter of the aperture:

The rectangular aperture of dimensions a ✕ b on 
the left gives the diffraction pattern on the right.
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Diffraction Gratings

(a) Ruled periodic parallel scratches on a glass serve 
as a transmission grating. (b) A reflection grating. An 
incident light beam results in various "diffracted" 
beams. The zero-order diffracted beam is the normal 
reflected beam with an angle of reflection equal to the 
angle of incidence.

Blazed (echelette) grating.

Bragg Diffraction Condition

For light incident at an angle

(a) A diffraction grating with N slits in an opaque 
scree. (b) The diffracted light pattern. There are 
distinct beams in certain directions (schematic)



Thank you!
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