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Light is an electromagnetic wave
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Direction of Propagation=—g» k
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An electromagnetic wave is a traveling wave that has time-varying electric and magnetic
fields that are perpendicular to each other and the direction of propagation z.



E =E cos(wt—kz+¢)

= Electric field along x at position z at time t
k Propagation constant = 217/A
A = Wavelength
w = Angular frequency = 210 (v = frequency)
E_ = Amplitude of the wave
®_ = Phase constant; at t =0 and z =0, E_may or may not necessarily be zero
depending on the choice of origin.

(wt—kz + @ ) = @ = Phase of the wave

This is a monochromatic plane wave of infinite extent traveling in the positive z
direction.



Wavefront

A surface over which the phase of a wave is constant is
referred to as a wavefront

A wavefront of a plane wave is a plane perpendicular to
the direction of propagation

The interaction of a light wave with a nonconducting
medium (conductivity = 0) uses the electric field
component E_rather than By.

Optical field refers to the electric field E .



E and B have constant phase
in this xy plane; a wavefront

il

N
Propagation
E,
A E_= E sin(ot-kz)
> Z

A plane EM wave traveling along z, has the same £ _(or B ) at any point in a given xy plane.
All electric field vectors in a given xy plane are therefore in phase. The xy planes are of
infinite extent in the x and y directions.



Phase Velocity \’

The time and space evolution of a given phase ¢, for example that
corresponding to a maximum field is described by

¢ =t — kz + ¢ = constant

During a time interval ot, this constant phase (and hence the
maximum field) moves a distance 0z. The phase velocity of this
wave is therefore 0z/6t. The phase velocity V is



Phase change over a distance Az
p=wt—kz+o
Ap = kAz

The phase difference between two points separated by
Az is simply kAz
since wt is the same for each point

If this phase difference is 0 or multiples of 27 then the
two points are in phase. Thus, the phase difference Ag
can be expressed as KAz or 2xAz/A



IH:“ e'? = cos ¢ +1i sin @ \’
Exponential Notation K 4

Recall that
cosop = Re[exp(jo)]

where Re refers to the real part. We then need to take the real
part of any complex result at the end of calculations. Thus,

sin ¢

E (z,0) = Re[E exp(jp )expj(wt — kz)]
or
E (z,7) = Re[E expj(wt — kz)]

where E_ = E exp(jp ) is a complex number that represents the
amplitude of the wave and includes the constant phase
information ¢ .



Wave Vector or Propagation Vector

Direction of propagation is indicated with a vector k, called
the wave vector, whose magnitude is the propagation
constant, k = 2n//. K is perpendicular to constant phase
planes.

When the electromagnetic (EM) wave is propagating along
some arbitrary direction Kk, then the electric field E(r,7) at a
point r on a plane perpendicular to K is

E(mf)=E cos(wt—k'r+o¢)

If propagation is along z, k- r becomes kz. In general, if k
has components £ , ky and k_alongx, y and z, then from the

definition of the dot product, k- r=k x+ k WV +kz.
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Wave Vector kK

Direction of propagation

E(rt)=E cos(wt—kr+¢ )

A traveling plane EM wave along a direction k
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Maxwell’s Wave Equation

0°E O°E O'E 0°E
ax2 | 6_)/2 | 622 8087"1(’[0

ot* =0

A plane wave is a solution of Maxwell’s wave equation
E =E cos(wt—kz+¢ )

Substitute into Maxwell’s Equation to show that this is a solution.
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Spherical Wave

E = 4 cos(wt — kr)
r

Wavetronts
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Wavefronts
(constant phase surfaces)

|
J
!

A perfect plane wave

(a)

Wavetronts

A perfect spherical wave

(b)

Examples of possible EM waves

Wavefronts

A divergent beam

(c)

Optical divergence refers to the angular separation of wave vectors on a given

wavefront.
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Gaussian Beam \;

The radiation emitted from a laser can be approximated by a Gaussian
beam. Gaussian beam approximations are widely used in photonics.

Wavefronts

> Z Beam axis

Wavefronts of a Gaussian light beam
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Gaussian Beam \;

The intensity across the beam follows a Gaussian distribution

Wavefronts ¢
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Intensity = I(r,z) = [2P/(aw*)]|exp(—2r*/w?)

0 = W/Z - /1/(71'W0) 20 = Far field divergence

15



The Gaussian Intensity Distribution is Not Unusual \;

The Gaussian intensity distribution is also used in fiber optics
The fundamental mode in single mode fibers can be approximated with a
Gaussian intensity distribution across the fiber core

Intensity in the
fundamental mode

I(r) = I(0)exp(—2r%/w?)
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Gaussian Beam

2(9 = Far field divergence
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Spherical mirror

Gaussian Beam

|
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| |
| |
i Zo A
<— Confocal parameter —
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Rayleigh range Z =
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Real and Ideal Gaussian Beams \;

Real beam M?> 1

Gaussian beam M? =1

f
i.

or 0 o r
_____;j£<‘.lI[’ 6% > 7z
&) 0,

Definition of M?>

— —1/2

v, w 0 2\?
A2 = Yor%r _ WoY, o (ZAMJ
wo (w2

TTW

or

The Gaussian beam concept is so useful in photonics that a special quantity, called the
M2-factor, has been introduced to compare a given laser beam to an ideal Gaussian beam.
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Real Gaussian Beam \;

Real beam M?> 1

Gaussian beam M2 =1

r
i

Real beam

_l W /le 2—1/2
2w, =2w |1+ =

2
W

or

Correction note: Page 10 in textbook, Equation (1.11.1), w should be w_as above and w |
should be squared in the parantheses.
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Gaussian Beam in an Optical Cavity

< L=R >
Spherical mirror Spherical mirror

Wavefront

Optical cavity

Two spherical mirrors reflect waves to and from each other. The optical cavity contains a Gaussian
beam. This particular optical cavity is symmetric and confocal; the two focal points coincide at F.
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EXAMPLE 1.1.1 A diverging laser beam

Consider a He-Ne laser beam at 633 nm with a spot size of | mm. Assuming a Gaussian beam, what is the
divergence of the beam? What are the Rayleigh range and the beam width at 25 m?

22
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EXAMPLE 1.1.1 A diverging laser beam

Consider a He-Ne laser beam at 633 nm with a spot size of | mm. Assuming a Gaussian beam, what is the
divergence of the beam? What are the Rayleigh range and the beam width at 25 m?

Solution
Using Eq. (1.1.7), we find

40 4633 X 107 m)

20 = = = 8.06 X 10™#rad = 0.046°
m(2w,) (1 X 1077 m)
wwf, 77[(1 < 107° m)/Z]2
The Rayleigh range is Zp = = ; 3 =124 m
A (633 X 107" m)

The beam width at a distance of 25 m 1s

)

2w = 2w, [l + (z/z)* ]2 = (1 X 103 m){1 + [(25 m)/(1.24 m)]?}!/2

= 0.0202 m ox_ 20 mm.

\

b 1/2
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Refractive Index

When an EM wave is traveling in a dielectric
medium, the oscillating electric field polarizes the
molecules of the medium at the frequency of the
wave

The stronger is the interaction between the field

and the dipoles, the slower is the propagation of the
wave

24



Maxwell’s Wave Equation in an isotropic medium \;

O'E OE OF e 0'E
o o o Heee

A plane wave is a solution of Maxwell’s wave equation
E =FE cos(wt—=kz +
X o ( z ¢0)
The phase velocity of this plane wave in the medium is given by

1

k - \/gogrluo

The phase velocity in vacuum is

=0

V =

0 |
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)
Phase Velocity and ¢

The relative permittivity ¢ measures the ease with which the
medium becomes polarized and hence it indicates the extent of
interaction between the field and the induced dipoles.

For an EM wave traveling in a nonmagnetic dielectric medium
of relative permittivity ¢ , the phase velocity V is given by

1
- NE

26



Phase Velocity and ¢

Refractive Index n

1
T JE.E 1,

Refractive index n C
n=—=,/¢g
V

definition
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Low frequency (LF) relative permittivity ¢ (LF) and refractive index n.

TABLE 1.1 Low-frequency (LF) relative permittivity &.(LF) and refractive index n

Material &, (LF) [8,(LF )]l/ % n(at A) Comment

Si 11.9 3.44 3.45 (at 2.15 pm) Electronic bond polarization up to optical frequencies
Diamond ad 2.39 2.41 (at 590 nm) Electronic bond polarization up to UV light

GaAs 13.1 3.62 3.30 (at 5 pm) lonic polarization contributes to g,(LF)

Si0, 3.84 2.00 1.46 (at 600 nm) lonic polarization contributes to g,(LF)

Water 80 8.9 1.33 (at 600 nm) Dipolar polarization contributes to g,(LF), which

is large

28



Optical frequencies

Typical frequencies that are involved in
optoelectronic devices are in the infrared
(including far infrared), visible, and UV, and we

generically refer to these frequencies as optical
frequencies

Somewhat arbitrary range:

Roughly 1012 Hz to 10%° Hz

29



Refractive Index and Propagation Constant /

k Free-space propagation constant (wave vector)
k =2m/i
/. Free-space wavelength

k Propagation constant (wave vector) in the medium
/4 Wavelength in the medium

n=—

k

o

In noncrystalline materials such as glasses and liquids, the material structure is

the same in all directions and n does not depend on the direction. The refractive
index is then isotropic

30
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Refractive Index and Wavelength

It is customary to drop the subscript o on k£ and 4

In free space
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Refractive Index and Isotropy

Crystals, in general, have non-isotropic, or
anisotropic, properties

Typically noncrystalline solids such as glasses and
liquids, and cubic crystals are optically isotropic;
they possess only one refractive index for all
directions

32



n depends on the wavelength 4 \7

Dispersion relation: n = n(4)
The simplest electronic polarization gives

0 2 0 N_ =Number of atoms per unit
2 N atze A‘o )« volume
n =1+ > > Z = Number of electrons in the
gOme 27[C ﬂ, — A’o atom (atomic number)
T

/10 = A “resonant
frequency”

Sellmeier Equation
AN AN AN

n- =1+ + +
R S R T S b

33
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4
n depends on the wavelength 4

Cauchy dispersion relation
n = n(v)

n=n_(hv)?*+n_+n_(hv)’ +n,(hv)*



N

n depends on the wavelength 4

TABLE 1.2 Sellmeier and Cauchy coefficients

Sellmeier Ay A, Aj A, (pm) A (pum) A; (pm)
S10; (fused 0.696749 0.408218 0.890815 0.0690660 0.115662 9.900559
silica)
86.5%8Si0,- 0.711040 0.451885 0.704048 0.0642700 0.129408 9.425478
13.5%Ge0,
GeO, 0.80686642 0.71815848 0.85416831 0.068972606 0.15396605 11.841931
Sapphire 1.023798 1.058264 5.280792 0.0614482 0.110700 17.92656
Diamond 0.3306 4.3356 - 0.1750 0.1060 -

Range of
Cauchy hv (eV) n_, (eV?) n n, (eV™3) ny (eV™
Diamond 0.05-5.47 —1.07 X 1073 2.378 801 X 1073 1.04 X 1074
Silicon 0.002—1.08 —2.04 X 1078 3.4189 815 X 1072 1.25 X 1072
Germanium 0.002—0.75 —1.0x 1078 4.003 22 % 107! 1.4 X 107}

Source: Sellmeier coefficients combined from various sources. Cauchy coefficients from D. Y. Smith et al., J. Phys. CM, 13, 3883, 2001.
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EXAMPLE 1.2.1 Sellmeier equation and diamond

Using the Sellmeier coefficients for diamond in Table 1.2, calculate its refractive index at 610 nm (red light)
and compare with the experimental quoted value of 2.415 to three decimal places.

36
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EXAMPLE 1.2.1 Sellmeier equation and diamond

Using the Sellmeier coefficients for diamond in Table 1.2, calculate its refractive index at 610 nm (red light)
and compare with the experimental quoted value of 2.415 to three decimal places.

Solution

The Sellmeier dispersion relation for diamond is

, 0.3306\2 4.3356)%
I + 2 2 47 2 : 2
A — 175 nm” A — 106 nm~

0.3306(610 nm)? 4.3356(610 nm)?

n=1+ = i e = : - = 5.8308
(610 nm)~ — (175 nm)~ (610 nm)~ — (106 nm)~

9

So that
= 24147

which is 2.4 15 to three decimal places and matches the experimental value.
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EXAMPLE 1.2.2 Cauchy equation and diamond

Using the Cauchy coefficients for diamond in Table 1.2, calculate the refractive index at 610 nm.

38



EXAMPLE 1.2.2 Cauchy equation and diamond

Using the Cauchy coefficients for diamond in Table 1.2, calculate the refractive index at 610 nm.

Solution
At A = 610 nm, the photon energy is
he  (6.626 X 107475)(2.998 X 10°ms™") 1

= — - wr; M — b = 2.0325eV
A (610 X 107 m) 1.602 X 10" JeV

Using the Cauchy dispersion relation for diamond with coefficients from Table 1.2,

n= n_z(hv)_2 + ny + izz(lzv)2 — 114(/1v)4
= (—1.07 X 107°)(2.0325)2 + 2.378 + (8.01 X 1073)(2.0325)?
+ (1.04 X 107%(2.0325)*
= 2.4140

which is slightly different than the value calculated in Example 1.2.1: one reason for the discrepancy is
due to the Cauchy coefficients quoted in Table 1.2 being applicable over a wider wavelength range at the
expense of some accuracy. Although both dispersion relations have four parameters, A;, A>. A. A, for
Sellmeier and n_,, ng, ny, ngq for Cauchy, the functional forms are different.

39



Group Velocity and Group Index

There are no perfect monochromatic
waves

We have to consider the way in which
a group of waves differing slightly in
wavelength travel along the z-direction

N
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Group Velocity and Group Index

When two perfectly harmonic waves of frequencies @ —
ow and w + ow and wavevectors k — ok and k + ok
interfere, they generate a wave packet which contains an
oscillating field at the mean frequency w that is amplitude
modulated by a slowly varying field of frequency ow. The
maximum amplitude moves with a wavevector ok and
thus with a group velocity that is given by

dw
‘e ~"ak

41



Group Velocity

A single wave packet

Two slightly different wavelength waves traveling in the same direction result in a wave
packet that has an amplitude variation that travels at the group velocity.

42



A single wave packet

43



Group Velocity

Consider two sinusoidal waves that are close in frequency, that is, they have
frequencies w — dw and w + Ow. Their wavevectors will be kK — 0k and k + Ok. The
resultant wave is

E (z,t) = E cos[(w = dw)t = (k — Ok)z]
+ E_cos[(w + dw)t = (k + Ok)z]

By using the trigonometric identity

CosA + cosB = 2cos[*/,(A — B)]cos['/,(A + B)]
we arrive at

E (z,t) = 2E_cos[(6w)t = (Ok)z][cos(wt = kz])]

44



™
E (z,0) =2E cos|(ow)t — (ok)z][cos(wt — k7)]

This represents a sinusoidal wave of frequency w . This is
amplitude modulated by a very slowly varying sinusoidal
of frequency ow. This system of waves, i.e. the modulation,
travels along 7 at a speed determined by the modulating
term, cos[(0w)t — (0k)z]. The maximum in the field occurs
when [(0w)t — (0k)z] = 2mm = constant (m is an integer),
which travels with a velocity

dz dSw do

— ——  c— or V —

dt ok 9k

This is the group velocity of the waves because it determines the speed of propagation
of the maximum electric field along z.
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The group velocity therefore defines the speed with which energy or information
is propagated.

v do
7 dk
w =2nc//s and k=2mn/A , A 1s the free space wavelength.

Differentiate the above equations 1n red
dow = —(27rc//102)dio

dk = 27n(~1/22)dA, + (2 /Ao)(j%jd/lo

dle = (27 17 n—=2, "\,
d).

0

L _do _ —Qmel2)di, ¢

° dk dn
—(271//1(2))(11—/10;1]61%0 n=2A,

o
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Group Velocity and Group Index

where n = n(4) is a function of the wavelength. The group
velocity v, in a medium is given by,

. dw C
v (mediumy) — =
o ™k no .9n
o/}
This can be written as
: C
v,(mediu Y

47



Group Index

an
N,=n-A—
J 0/

is defined as the group index of the medium

In general, for many materials the refractive index n and hence the group index Ng
depend on the wavelength of light. Such materials are called dispersive

48



Refractive Index and Group Index \f

1.49

1.48 —

1.47 — N

1.46

1.45

1.44

I O O O
500 700 900 1100 1300 1500 1700 1900

Wavelength (nm)

Refractive index n and the group index Ng of pure S10, (silica) glass as a function of
wavelength.
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Magnetic Field, Irradiance and Poynting Vector

The magnetic field (magnetic induction) component By always accompanies £ _in
an EM wave propagation.

If v is the phase velocity of an EM wave in an isotropic dielectric medium and 7 1s
the refractive index, then

)—1/2 1/2

where v= (¢ & u_ andn=¢

50
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EM wave carries energy along the direction of propagation k.
What is the radiation power flow per unit area?

A plane EM wave traveling along k crosses an area A at right angles to the direction of
propagation. In time At, the energy in the cylindrical volume AvA¢ (shown dashed) flows
through 4.

51



. N/
Energy Density in an EM Wave

As the EM wave propagates in the direction of the wavevector k, there is an
energy flow in this direction. The wave brings with it electromagnetic energy.

The energy densities in the £ and By fields are the same,

lgog,,Ej LB2
2 2u,

The total energy density in the wave is therefore SOErEXZ.
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Poynting Vector and EM Power Flow
If S is the EM power flow per unit area,

S = Energy flow per unit time per unit area

B (AvAt)(gog,,E%)
ANt

2

S = Vgog,,E)% =V7e,6,E, B,

In an isotropic medium, the energy flow is in the direction of wave propagation. If
we use the vectors E and B to represent the electric and magnetic fields in the EM
wave, then the EM power flow per unit area can be written as
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Poynting Vector and Intensity

where S, called the Poynting vector, represents the energy flow
per unit time per unit area in a direction determined by ExB
(direction of propagation). Its magnitude, power flow per unit
area, is called the irradiance (instantaneous irradiance, or
intensity).

The average irradiance is

_ — 1 2
[=5 =sve e b

average
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Average Irradiance or Intensity

Since v=c/n and ¢ = n® we can write

I=8§ =lce nE’ =(1.33x107)nkE’

average

The instantaneous irradiance can only be measured if the power meter can
respond more quickly than the oscillations of the electric field. Since this is in the
optical frequencies range, all practical measurements yield the average
irradiance because all detectors have a response rate much slower than the

frequency of the wave.
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Irradiance of a Spherical Wave

Wavetronts

Perfect spherical wave
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Irradiance of a Spherical Wave

Spherical wave front
0 A _____ ”
P, V\V‘
r




A Gaussian Beam \f
I(r, 2) = 1__exp(—2r’/w?)

Wavefronts

PP 2
PN .
" . X
il .
- . .
ot . [}
=" . )
e . . .
- . . .
. . .
“ . . .
. . . .
s . . .
. . . .
. . .

. e
2wo O .y
] T

Intensity

0
86% Gaussian

b Y power
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A Gaussian Beam

Wavefronts

Imax \

I(r,z) = [2P_/(7nw?)]exp(—2r*/w?)

0 = W/Z - )»/(R'Wo) 20 = Far field divergence
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A Gaussian Beam

N

I(r,z) =1__exp(—=2r’/w?)

J\/ 7 _ B)

max IO = Maximum 1irradiance at

“Ha |2 " R 2 7TW/ the center » = 0 at the waist

g 2
I(z,r)=1 | 2 2"

Beyond the Rayleigh range W Y
zZ>Zz

2w=2w,| — | =) [(z0)=1. =1 =] =

Z, w z
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Irradiance . .
I(r) Power in a Gaussian Beam

I1(r)” = 1(0)” exp[-2(r/w)’]

Area of a circular thin strip (annulus) with
radius 7 1s 2zrdr. Power passing through
this strip 1s proportional to

I(r) 2zr)dr
Power in this
annulus w ; 5 d
2 - r)2mrdr
2 zrdr)I(r)? Fraction of _([ ( )

optical power = — =0.865
within 2w J‘ 1(r)2mrdr
0
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C Ct,
]0 = Maximum irradiance at 5‘,

the center » = 0 at the waist

Gaussian Beam

~ P
Example on l,=—
2 W,

Example 1.4.2 Power and irradiance of a Gaussian beam

Consider a 5 mW HeNe laser that is operating at 633 nm, and has a spot size that is
1 mm. Find the maximum irradiance of the beam and the axial (maximum)
irradiance at 25 m from the laser.

Solution
The 5 mW rating refers to the total optical power P_available, and 633 nm is

the free space output wavelength A. Apply
P =1,(57w,)
5x10° W =1 [17(0.5x107 m)’]

| =1.273Wcm™
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Gaussian Beam

2 2
Example on [(z0)=1_ =1 W(; — IOZ—‘;
1%Y% Z

The Rayleigh range z_was calculated previously, but we can recalculate
z_=7aw */2=n(0.5x107 m)?/(633x107° m) = 1.24 m.
The beam width at 25 m is

2w =2w [1 + (z/zo)]l/2 =20 mm

The irradiance at the beam axis is

(1.24m)>

2

I\J‘Q |\S)

=(1.273Wcm™) =3.14mWcm™

z (25m)

I =1°"

axis (0]
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Snell’s Law or Descartes’s Law?

WiLLEBRORD SNELI

Willebrord Snellius (Willebrord Snel van Royen,
1580-1626) was a Dutch astronomer and a mathemati-
cian, who was a professor at the University of Leiden.
He discovered his law of refraction in 1621 which was
published by Réne Descartes in France 1637: it is not
known whether Descartes knew of Snell’s law or for-
mulated it independently. (Courtesy of AIP Emilio
Segre Visual Archives, Brittle Books Collection.)

René Descartes (1596—-1650) was a French philosopher
who was also involved with mathematics and sciences.
He has been called the “Father of Modern Philosophy.”
Descartes was responsible for the development of
Cartesian coordinates and analytical geometry. He
also made significant contributions to optics, includ-
ing reflection and refraction. (Courtesy of Georgios
Kollidas/Shutterstock.com.)

v
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Incident
light

Snell's Law

Transmitted
(refracted) light
n,
n.>n,
sinf,  n,
Reflected . = =
light sinf, n,
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Derivation of Snell’s Law

A

t

0... I
Refracted Light

A/ I
X : ‘
'O, ’
B o,
: n,
1
z A K:.. B"“
-~
O : ....... nl
....
.....
A 3
9’ 0’" ...... 01 9"
0... f ,, - “"
~~~~~ Bf o
.. ‘¢
"""""
O“
¢

Incident Light B 4. Reflected Light

i

A light wave traveling in a medium with a greater refractive index (n, > n,) suffers
reflection and refraction at the boundary. (Notice that 4 is slightly longer than 1.)
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Snell’s Law

We can use constructive interference to show that there can only
be one reflected wave which occurs at an angle equal to the
incidence angle. The two waves along 4. and B, are in phase.

When these waves are reflected to become waves 4 and B _then
they must still be in phase, otherwise they will interfere
destructively and destroy each other. The only way the two
waves can stay in phase is if = 0.. All other angles lead to the
waves A and B_being out of phase and interfering destructively.
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Snell’s Law \’

Unless the two waves at A" and B’ still have the same phase, there will
be no transmitted wave. A’ and B’ points on the front are only in phase
for one particular transmitted angle, 0.

It takes time 7 for the phase at B on wave B. to reach B’
BB'=v.t=ct/n

During this time ¢, the phase 4 has progressed to A’
AA"=v,t=ct/n,

A" and B’ belong to the same front just like 4 and B so that AB is
perpendicular to k. in medium 1 and 4’B’ is perpendicular to Kk in
medium 2. From geometrical considerations,

AB'" = BB'/sin0. and AB" = AA'/sinf, so that

68



or AR _ Vt B th sin@.:_:_
sm@ simg,  sinb, v, n

n,sinb, =n,sino,

nsin @ = constant

This is Snell's law which relates the angles of incidence and refraction to the
refractive indices of the media.
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n,snb, =n,sino,
When n_ > n, then obviously the transmitted angle is greater than the incidence

angle as apparent in the figure. When the refraction angle Gt reaches 90°, the
incidence angle is called the critical angle GC which is given by

. n
sinf, = —=
n,
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Snell’s Law

. n
sinf, = —=
n,

When the incidence angle 0. exceeds 6 then there is no
transmitted wave but only a reflected wave. The latter
phenomenon is called total internal reflection (TIR). TIR
phenomenon that leads to the propagation of waves in a
dielectric medium surrounded by a medium of smaller
refractive index as in optical waveguides, e.g. optical fibers.

Although Snell's law for 0. > 6 shows that sind > 1 and
hence 6, is an "imaginary" angle of refraction, there is

however an attenuated wave called the evanescent wave.
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Total Internal Reflection

Transmitted
(refracted) light
\

Incident \ Reflected TIR
light light

(a) (b) (c)

Light wave traveling in a more dense medium strikes a less dense medium.
Depending on the incidence angle with respect to 6 , which is determined by the
ratio of the refractive indices, the wave may be transmitted (refracted) or reflected.
(a) 0. <6 (b)6,=6 (c)0.> 0 and total internal reflection (TIR).

72



Deflection = & TIR
/ -
Deflected
light

Y

Refracting prism Reflecting prism
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Lateral Displacement

1

cos 0.

v

\/(n/na)2 —sin” 0, )



Example: Lateral Displacement \;

Lateral displacement of light, or, beam displacement, occurs when a beam if light passes
obliquely through a plate of transparent material, such as a glass plate. When a light beam is
incident on a plate of transparent material of refractive index n, it emerges from the other
side traveling parallel to the incident light but displaced from it by a distance d, called lateral
displacement. Find the displacement d in terms of the incidence angle the plate thickness L.
What is d for a glass of n = 1.600, L = 10 mm if the incidence angle is 45°

Solution

The displacement d = BC = ABsin(0. — 0)). Further, L/AB = cosf, so that combining these
two equation we find

T O — 6 \' E n . .

v C,\' ’ ' Transparent plate d — L Sln(gi Ht )
A, cos 0,

7’ € ) B n
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Example: Lateral Displacement (Continued) \;

Solution (Continued)

Expand sin(6, — 6 ) and eliminate sinf, and sinf,

e

p I A, sin(6; —6,) = sin 6, cos 6, — cos O, sin 6,
o

yé C - ’ ' Transparent plate _ cos B

\L P ’, \\ et : t\
/\;/B Mo cos@t:wll—sivr\lzét
d

Snell's law nsin@t = nosiné’i

3 cos 0,
\/(n/no)2 —sin” 0, )

d_ sin0;| 1
L
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Example: Lateral Displacement (Continued) \;

Solution (Continued)

cos 0,

d .
—=smn0,|1-
/L /_ \/(n/no)z—sian._

L= 10 mm /

0 = 450 n=1.600| |n =1

~

d=3.587 mm
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Light travels by total internal reflection in optical fibers \;

Optical Fiber
Digital signal
Emitter Photodetector
Information —» o v :
nformation " " " , +111p11t - -—> Information
R
4

An optical fiber link for transmitting digital information in communications. The fiber core
has a higher refractive index so that the light travels along the fiber inside the fiber core
by total internal reflection at the core-cladding interface.
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A small hole is made in a plastic bottle full of water to generate a water jet. When the hole is illuminated with a laser
beam (from a green laser pointer), the light is guided by total internal reflections along the jet to the tray. The light
guiding by a water jet was first demonstrated by Jean-Daniel Colladan, a Swiss scientist (Water with air bubbles was
used to increase the visibility of light. Air bubbles scatter light.) [Left: Copyright: S.O. Kasap, 2005] [Right: Comptes
Rendes, 15, 800-802, October 24, 1842; Cnum, Conservatoire Numérique des Arts et Métiers, France
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Physicists use the wave theory on Mondays, Wednesdays and Fridays and the particle theory
on Tuesdays, Thursdays and Saturdays.

—Sir William Henry Bragg'

Augustin Jean Fresnel (1788-1827) was a French physicist and a civil engineer for the French government
who was one of the principal proponents of the wave theory of light. He made a number of distinct con-
tributions to optics including the well-known Fresnel lens that was used in lighthouses in the nineteenth
century. He fell out with Napoleon in 1815 and was subsequently put under house arrest until the end
of Napoleon’s reign. During his enforced leisure time he formulated his wave ideas of light into a math-
ematical theory. (© INTERFOTO/Alamy.)

If you cannot saw with a file or file with a saw, then you will be no good as an experimentalist.
—Attributed to Augustin Fresnel
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Fresnel's Equations

E t// Transmitted wave

kt Evanescent "
wave ¢
V4

x into paper E,,

Incident " Reflected Incident ” Reflected
wave wave wave wave

(a) 0, <0, (b) 6> 0O,

Light wave traveling in a more dense medium strikes a less dense medium. The plane of incidence is the plane of the
paper and is perpendicular to the flat interface between the two media. The electric field is normal to the direction of
propagation. It can be resolved into perpendicular and parallel components.
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Fresnel's Equations

Describe the incident, reflected and refracted waves by
the exponential representation of a traveling plane
wave, i.e.

E.=FE. expj(wt—k. 1) Incident wave
E =FE expj(wt—K 'r) Reflected wave

E =FE expj(wt—K r) Transmitted wave

These are traveling plane waves
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Fresnel's Equations

where r is the position vector, the wave vectors k, k_
and k describe the directions of the incident,
retlected and transmitted waves and £, , E and E_
are the respective amplitudes.

Any phase changes such as ¢_and ¢, in the reflected
and transmitted waves with respect to the phase of
the incident wave are incorporated into the complex
amplitudes, £ _and E_. Our objective is to find £

and E_ with respect to £ .
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Fresnel's Equations

The electric and magnetic fields anywhere on the
wave must be perpendicular to each other as a
requirement of electromagnetic wave theory. This
means that with £ in the EM wave we have a
magnetic field B, associated with it such that, B |
= (n/c)E . Similarly £, will have a magnetic field
B associated with it such that B, = (n/c)L | .

We use boundary conditions

tangential(l) tangential(z)
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Fresnel's Equations

Non-magnetic media (relative permeability, 4 = 1),

tangential(l) tangential(z)

Using the above boundary conditions for the fields at y =
0, and the relationship between the electric and magnetic
fields, we can find the reflected and transmitted waves in
terms of the incident wave.

The boundary conditions can only be satisfied if the
reflection and incidence angles are equal, 6 = 0. and the
angles for the transmitted and incident wave obey Snell's
law, n sinf, = n,sind,
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Fresnel's Equations

x into paper E,,

7
- Reflected
wave wave

(a) 0. <0,

Incident wave E =E expj(wt— K. 1)

Reflected wave E =E expj(wt—K )

Transmitted wave E =FE expj(wt—Kk 1)

\
Incident
wave wave

Evanescent !
wave ¢
/

£ /Rcflcctcd
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Fresnel's Equations

Applying the boundary conditions to the EM wave going
from medium 1 to 2, the amplitudes of the reflected and
transmitted waves can be readily obtained in terms of n ,

2

n, and the incidence angle 6. alone. These relationships

are called Fresnel's equations. If we define n = n,/n , as
the relative refractive index of medium 2 to that of 1, then

the reflection and transmission coefficients for £ | are,
[ 2 . D /2
E.,, cosO —|n"—sin" 0O
r = — = =
0,L. €0sO,+|n" —sm” 0,
. Eo, 2cos0.
L= —

: /2
EiO,L COS 9;' + [n2 — Sln2 Ql.]l
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Fresnel's Equations

There are corresponding coefficients for the E// fields with corresponding

reflection and transmission coefficients, r// and t//,

Ry 2
E., [n°—sin 91.]1 —n” cos0,
'7/ = T /2
2 2 2
Ly |n® —sin Hl.]] +n” cos0,
. Eoy 2ncoso,
/ —

. /2
Eyy  n’cos0 + [n2 —sin” 9,-]]
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Fresnel's Equations

Further, the above coefficients are related by

r”+nt”=1 and rJ_+1=t

For convenience we take E. to be a real number so that
phase angles of r| and {, correspond to the phase changes
measured with respect to the incident wave.

For normal incidence (6. = 0) into Fresnel's equations we
find,

n, —n,

r,=r, =
I/ll‘l'l/lz
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Magnitude of reflection coefficients

A 6.
1, "= 180 —
0.9 7 —
0.8 1297
0.7 7
0.6
0.5 o 0
0.4 .
- r o
0.3 7 In —60
0.2 7 S f>11y] 120 =]
0.1 7 i i
0 ETE Y [ & R I i amo=y =130
0O 10 20 30 40 50 60 70 80 90
Incidence angle, 6.
Internal reflection (a)

60 ]

A

Phase changes in degrees

TIR

0

10 20 30 40 50 60 70 80 90

Incidence angle, 6,

(b)

(a) Magnitude of the reflection coefficients r, and r | vs. angle of incidence 0, for n, = 1.44 and
n,=1.00. The critical angle is 44°.

(b) The corresponding changes ¢, and ¢ | vs. incidence angle.
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Reflection and Polarization Angle \;

We find a special incidence angle, labeled as 0 , by solving
the Fresnel equation for r, = 0. The field in the reflected
wave is then always perpendlcular to the plane of
incidence and hence well-defined. This special angle is
called the polarization angle or Brewster's angle,

E.,, n —sin 9]] —n°cos6.
r}/: - = :O

2
Ly |n® —sin’ 6, ]] +n”coso,
n For both n, > n,

tan0 =-—=2 |o .t
1%
n,
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Polarized Light

Plane of polanzation

A linearly polarized wave has its electric field oscillations defined along a
line perpendicular to the direction of propagation, z. The field vector E and z
define a plane of polarization.
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Brewster's angle

Glass plate

\ E parallel to paper

® E normal to paper
Incident Reflected

light light

Reflected light at 6. = Hp has only E

for both n >n,orn <n,.
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Total Internal Reflection

In linearly polarized light, however, the field oscillations
are contained within a well defined plane. Light emitted
from many light sources such as a tungsten light bulb or
an LED diode is unpolarized and the field is randomly
oriented in a direction that is perpendicular to the
direction of propagation.

At the critical angle and beyond (past 44° in the figure),
i.e. when 6.2 0 , the magnitudes ot both r, and r  go to
unity so that the retlected wave has the same amplitude as
the incident wave. The incident wave has suffered total
internal reflection, TIR.
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Phase change upon total internal reflection \‘

When 6.> 0 , in the presence of TIR, the retlection coefficients
become complex quantities of the type

r, = 1: exp(—jgol) and r,= 1 °exp(—jqo//)

with the phase angles ¢ | and ¢ being other than zero or 180°.
The reflected wave therefore suffers phase changes, ¢ | and ¢,
in the components £ | and E . These phase changes depend on
the incidence angle, and on n and n,.

The phase change ¢ | is given by

tan %% — [sin2 %= nz]]/z

cos O,
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Phase change upon total internal reflection

For the E, component, the phase change ¢  is given by
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External Reflection

External reflection

IIIIIIIII
L 4

_1 IIIIIIIIIIIIIIIII1
0 10 20 30 40 50 60 70 80 90

Incidence angle. &

The reflection coefficients », and | versus angle of incidence 6. for n

1

=1.00 and n,= 1.44.
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Evanescent Wave

In internal reflection (n, > n,), the amplitude of the
reflected wave from TIR is equal to the amplitude of
the incident wave but its phase has shifted.

What happens to the transmitted wave when 6.> 6 ?

According to the boundary conditions, there must
still be an electric field in medium 2, otherwise, the
boundary conditions cannot be satistied. When 6. >
0 , the field in medium 2 is attenuated (decreases
with y, and is called the evanescent wave.
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Yy
A Ny, <n
Evanescent 1
wave ,
amplitude ,’ E Evanescent
" i rtii wave /(-7 n2
N \\Iit,l(_\‘ P /\,/ 7 - » > 7
\ \\ : o 5 1
N Er;_L
I
|
i
. S 1 o Reflected
wave : : ,"Wavefront AT

When 0.> 6 , for a plane wave that is reflected, there is an evanescent wave at the boundary
propagating along z.
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Evanescent wave when plane waves are incident and reflected

E,, (y,2,0) o € exp j(ot — k,2)

where k.= kl.sinel. is the wavevector of the incident wave along the z-axis, and @,
is an attenuation coefficient for the electric field penetrating into medium 2

W —1/2
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Penetration depth of evanescent wave

a, = Attenuation coefficient for the electric field penetrating into medium 2

2

2
a, :Zﬂ—nz 7h Sil”%@,- -1
,

1/2

1

The field of the evanescent wave 1s e in medium 2 when

y =1l/a, =0 = Penetration depth
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Goos-Hanchen Shift

Virtual reflecting plane

\ n2
- B d $ ,/”’ \\\\
A 0, i 0, n >n,
Az —
Incident Reﬂected
light light

Az = 2otan6
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Beam Splitters \;
Frustrated Total Internal Reflection (FTIR)

Reflected
& B = Low refractive index
Reflected ¢ t fil
gt ransparent film (»,) A
& N\
nl
n ETIR
= [l " e
5 P
" 6>0, = Transmitted - e
Incident
/ A light @ A
Glass prism
(a) (b)
(a) A light incident at the (b) Two prisms separated by a thin low
long face of a glass prism refractive index film forming a beam-splitter
suffers TIR; the prism cube. The incident beam 1is split into two

deflects the light. beams by FTIR.
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Optical Tunneling

\ \ \ \ \
\ \ \\ W 3 2
\ \ \ k \\ \\ n
\
\ % \ NTE " \ \ 1
3 3 AN
T T T I } 1 A
I | I I | I
B I | I I | I nz d
E 1 1 | 1 ] 1
\ \ A \\ //\\ /'\\ /\\ /' //
\ % § 7% 0% Pl S / l’ll > n2
\ \ \ LI Wk / /
\ \ \ % X o 4 / /
\ \ k \\ 5/ I‘\/\ // ’
. . ! X ’
Incident light *\ % v /7 T/ Reflected light
\ \
\\ \ \ 2 / //
\ \ b4 /
\ \
\ \ 91 > QC / //
\ /
\ /

When medium B is thin (thickness d 1s small), the field penetrates from the AB
interface into medium B and reaches BC interface, and gives rise to a transmitted
wave in medium C. The effect is the tunneling of the incident beam in A through B
to C. The maximum field £ of the evanescent wave in B decays in B along y and

but is finite at the BC boundary and excites the transmitted wave.
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Beam splitter cubes .f
(Courtesy of CVI Melles
Griot)

Reflected

B = Low refractive index
transparent film (n,) A

h Y

FTIR

. ok bz 2 ec
Transmitted — T}

Two prisms separated by a thin low
refractive index film forming a
C A beam-splitter cube. The incident beam is

split into two beams by FTIR.
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Optical Tunneling \’

Laser light

Prism
Guided light d = Adjustable coupling gap
| Air n, ~/ Guided ligh

\N n, | Thin layer Thin layer \M\

n
3
Glass substrate Glass substrate
(a) (b)
Light propagation along an Coupling of laser light into a thin layer
optical guide by total - optical guide - using a prism. The

internal reflections light propagates along the thin layer.
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External Reflection \;
Light approaches the boundary from the lower index side,
n <n,
This is external reflection.
Light becomes reflected by the surface of an optically

denser (higher refractive index) medium.

r, and r, depend on the incidence angle .. At normal
incidence, r | and r, are negative. In external reflection at
normal incidence there is a phase shift of 180°. r, goes
through zero at the Brewster angle, Hp. At Hp, the reflected
wave is polarized in the £, component only.

Transmitted light in both internal reflection (when 6. <0 )
and external reflection does not experience a phase shift.
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Intensity, Reflectance and Transmittance

Reflectance R measures the intensity of the reflected light with respect to that of
the incident light and can be defined separately for electric field components
parallel and perpendicular to the plane of incidence. The reflectances R and R//

are defined by

9 2

E, 2
R =Lt | ™ R =‘ =]
L= > =1 /I 2 /l

io, L
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At normal incidence

2
R:RL:R//:(nl_nzj

n, +n2

Since a glass medium has a refractive index of
around 1.5 this means that typically 4% of the
incident radiation on an air-glass surface will be
reflected back.
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Example: Reflection at normal incidence. Internal f
and external reflection

Consider the reflection of light at normal incidence on a boundary
between a glass medium of refractive index 1.5 and air of
refractive index 1.

(a) If light is traveling from air to glass, what is the reflection
coefficient and the intensity of the reflected light with respect to
that of the incident light?

(b) If light is traveling from glass to air, what is the reflection
coefficient and the intensity of the reflected light with respect to
that of the incident light?

(c) What is the polarization angle in the external reflection in a
above? How would you make a polaroid from this?
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27
Solution

(a) The light travels in air and becomes partially reflected at
the surface of the glass which corresponds to external

reflection. Thus n,=1and n, =1.5. Then,

SIS IS Sy
n+n 1+15

hy =1

This is negative which means that there is a 180° phase shift. The
reflectance (R), which gives the fractional reflected power, is

R = r//2 = 0.04 or 4%.
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N
(b) The light travels in glass and becomes partially
reflected at the glass-air interface which

corresponds to internal reflection. n,=15and n, =
1. Then,

_n-n 15-1_ 0.
n+n 15+1

hy=r

There is no phase shift. The reflectance is again 0.04 or 4%. In both cases
(a) and (b) the amount of reflected light is the same.
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(c) Light is traveling in air and is incident on the 4

glass surface at the polarization angle. Here n, =1,
n,=1.5and taan =(n,/n,) =1.5 so that Hp = 56.3°.

>

This type of pile-of-plates polarizer was invented by
Dominique F.J. Arago in 1812
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Transmittance

Transmittance T relates the intensity of the transmitted
wave to that of the incident wave in a similar fashion to the
reflectance.

However the transmitted wave is in a different medium
and further its direction with respect to the boundary is

also different due to refraction.

For normal incidence, the incident and transmitted beams
are normal so that the equations are simple:
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Transmittance
2 E 2
1 Eo,1 n, . 1 M\ o,y n, I, 12
I = 2=n—|’l‘ I, = 2=n—t//|
n Eio,L 1 n Eio,// 1
Adn.n
or _ _ _ 1°%2
Ir=T, =T,= ;
(”1 + ”2)

Further, the fraction of light reflected and fraction transmitted must add to unity.
Thus R+ T =1.
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Reflection and Transmission — An Example

Question A light beam traveling in air is incident on a glass plate of refractive index
1.50 . What is the Brester or polarization angle? What are the relative intensities of
the reflected and transmitted light for the polarization perpendicular and parallel to
the plane of incidence at the Brewster angle of incidence?

Solution Light is traveling in air and is incident on the glass surface at the polarization
angle Qp. Heren =1,n, =1.5and tan@p =(n,/n ) = 1.5 so that Qp =56.31°. We now have
to use Fresnel's equations to find the reflected and transmitted amplitudes. For the
perpendicular polarization

]1/2

2 o2
E,, cosB, —[n" —sin” 6,

"TE 0, +[n* —sin’ 0
o1 €080, +[n" —sin” 0,

]]/2

o cos(56.31°) —[1.5* —sin*(56.31°)]"?
T c0s(56.31°) +[1.5* —sin’(56.31°)]"?

= —0.385

On the other hand, r, =0. The reflectances R, = | r, |?=0.148 and R = |r,|> = 0 so that
R =0.074, and has no parallel polarization in the plane of incidence. Notice the negative
signin r , which indicates a phase change of z.
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Reflection and Transmission — An Example

¢ Eol B 2cos 6,
1

- - 2 - 2
E,, cosO +[n" —sin” 0]

1/2

2¢0s(56.31°%)
t, = 0 2 .2 oNq1/2
cos(56.31°)+[1.5" —sin"(56.31")]

=0.615

E.o 2ncoso,

t = =
I 2 2 N
E,, n cosO +[n" —sin"0,

]1/2

2(1.5)co0s(56.31°)

b= = 0.667
! (15)2 COS(S6.31°)+[1.52 —sin2(56.31°)]l/2

Notice that r,+ nt// =landr, +1=t{,aswe expect.

117



Reflection and Transmission — An Example

To find the transmittance for each polarization, we need the refraction angle Qt. From
(1.5)sino,, we find 0, =

Snell's law, n sind. = nsinf ie. (1)sin(56.31 )

33.69°.

2

/. 2 — | Y
n

n Eio,//

T (1.5)cos(33.69°)
"1 (1)cos(56.31°)

}(0.667)2 =1

EtoJ_

2

(1.5)c0s(33.69°)

io, L

E [ :(Z_?jw

(I)cos(56.31°%)

Clearly, light with polarization parallel to the plane of incidence has greater intensity.

If we were to reflect light from a glass plate, keeping the angle of incidence at 56.3°, then
the reflected light will be polarized with an electric field component perpendicular to the

plane of incidence. The transmitted light will have the field greater in the plane of
incidence, that is, it will be partially polarized. By using a stack of glass plates one can

increase the polarization of the transmitted light. (This type of pile-of-plates polarizer was
invented by Dominique F.J. Arago in 1812.)

}(0.615)2 =(.852
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Example: Reflection of light from a less dense 4
medium (internal reflection)

A ray of light which is traveling in a glass medium of refractive index n, = 1.460
becomes incident on a less dense glass medium of refractive index n, = 1.440.
The free space wavelength (A) of the light ray is 1300 nm.

(@) What should be the minimum incidence angle for TIR?

(b) What is the phase change in the reflected wave when 6, = 87 ° and when

6., = 90°7?

(c) What is the penetration depth of the evanescent wave into medium 2 when
6. = 87° andwhen 6, = 90°?
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Solution

(a) The critical angle 6 _for TIR is given by

sind = n_/n, =1.440/1.460 so that & = 80.51°

(b) Since the incidence angle 6.> 6 there is a phase
shift in the reflected wave. The phase changein £,
is given by ¢ | .

Using n, = 1.460, n, =1.440 and 6. = 87°,
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i 1440V |
L |sin®(87Y) - (j
[sin2 0 —nz]] 1.460
tan(% 0, ) = l = )
cos0, cos(87Y)

=2.989 = tan[1/2(143.0°)]

so that the phase change @ | =143°.

For the Er// component, the phase change is

. 9 > 1/2
tan(%qb// +%7t): [sm 291' — ]] = 12 tan(%%)
n-cos0, n
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so that

tan('/p +'/,7) = (n,/n,)*tan(p  /2) =
(1.460/1.440)2tan(1/2143°)

which gives ¢ =143.95° —180° or —36.05°

Repeat with 6.=90° to find ¢ | =180° and ¢ = 0°.

Note that as long as 0.> 6 , the magnitude of the reflection
coefficients are unity. Only the phase changes.
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(¢) The amplitude of the evanescent wave as it r
penetrates into medium 2 is

E, () < E, | exp(-ay)

The field strength drops to e! when y = 1/a, = 0, which is
called the penetration depth. The attenuation constant «, is

5 1/2

a, _ ) n sirfo, —1
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27(1.440) (1'46329&(87’)—1

ie. 2 (1300<10° m) \144

=1.10x10° m™.

The penetration depth is,
6=1/a,=1/(1.104x10°m) = 9.06x10”" m, or 0.906 um

For 90°, repeating the calculation, a, = 1.164x10° m™, so that
5=1/a, =0.859 um

The penetration is greater for smaller incidence angles

1/2
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Example: Antireflection coatings on solar cells

When light is incident on the surface of a semiconductor it
becomes partially reflected. Partial reflection is an
important energy loss in solar cells.

The refractive index of Si is about 3.5 at wavelengths

around 700 - 8300 nm. Retlectance with n (air) =1 and
n,(Si) = 3.5 is

2 2
R :(”1_”2] :(1‘33 _ 0.30¢
n +n, 1+ 3.
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30% of the light is reflected and is not available for conversion to electrical
energy; a considerable reduction in the efficiency of the solar cell.

heident light . a2
cident I
~ /\g nl n2 n3
VvV \/
A
B €
<€
T T TN
>
D(.. _____ —
/!
Surface ‘ |

Antireflection  Semiconductor or
coating photovoltaic device

Illustration of how an antireflection coating reduces the reflected light intensity.
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We can coat the surface of the h/liidem/h\ght n 1, 1y
semiconductor device with a thin layer of a Y S —
dielectric material, e.g. Si,N, (silicon nitride) A M—)
that has an intermediate refractive index. B (Cé—f <
>
D<t-——- —
Surface | |

Antireflection  Semiconductor or
coating photovoltaic device

n,(air) = 1, n_(coating) = 1.9 and n,(Si) = 3.5

Light is first incident on the air/coating surface. Some of it
becomes reflected as 4 in the figure. Wave A has

experienced a 180° phase change on reflection because this
is an external reflection. The wave that enters and travels
in the coating then becomes reflected at the

coating/semiconductor surface.
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This reflected wave B, also suffers a

180° phase change since n, > n,, Incident light A s i > =
V V
When B reaches A, it has suffered a ADﬂVAV >
total delay of traversing the thickness d B ‘é(_/ <
of the coating twice. The phase \\-———ﬁ\
difference is equivalent to k (2d) [ N _,/"_)
where k_= 27T/AC is the propagation /!
constant in the coating, i.e. k_=2TT/A_ Surface | | | |
where A is the wavelength in the Antlreﬂ'ectlon Semlcondgctor or
coatin g.c coating photovoltaic device

Since A_=A/n,, where Ais the free-space wavelength, the phase difference
A@ between A and B is (27Tn2//\)(2d). To reduce the reflected light, A and B
must interfere destructively. This requires the phase difference to be 1T or
odd-multiples of 1, mmm where m = 1,3,5,... is an odd-integer. Thus
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min

>
ny, — Nh,

2 A
”nzj _ qd = 17‘[—
( > 2d=nmr ey

The thickness of the coating must be odd-multiples of the quarter wavelength
in the coating and depends on the wavelength.

\

2
an + CUE y
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A

i- ﬂ{_
an, /

To obtain good destructive interference between waves 4
and B, the two amplitudes must be comparable. We need
(proved later) n, = \/(n1n3). When n, = \/(n1n3) then the
reflection coefficient between the air and coating is equal
to that between the coating and the semiconductor. For a
Si solar cell, \/(3.5) or 1.87. Thus, Si,N_ is a good choice as
an antireflection coating material on Si solar cells.

Taking the wavelength to be 700 nm,

d= (700 nm)/[4 (1.9)] = 92.1 nm or odd-multiples of d.

130



min

1.9° — (1)(3.5)

>
ny, — NH,

\

2
an + OUE y

Rmin — [ )
1.9° +(1)(3.5)

Reflection is almost entirely extinguished

2
] =(0.000240r 0.24%

However, only at 700 nm.
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Dielectric Mirror or Bragg Reflector \;

<«d 1 —><—a’2—><—a’ . —><—a'2—>

O T P
A >
B < < > Z =
C <€ < :
D <€
o | High Low High Low -/}
n, n, n, n, Substrate

Schematic illustration of the principle of the dielectric mirror with many low and high
refractive index layers
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Dielectric mirrors \f

OWC‘D 1 12 2 1]2 27
4 < )

B "'(: - — 1z "

C - - 3

D &

Mg High Low High Low e
¥y 1, my #q Substrate
«—N=1 C N=2—»

Schematic illustration of the principle of the dielectric mirror with many low and high
refractive index layers
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N

%ODI 12 2l 12 277
4 < )
B "(: - —_ |z 4
C . -« =
D -
High Low High Low | //
Fiy P, my #y Substrate

N = Q——

A dielectric mirror has a stack of dielectric layers of alternating
refractive indices. Letn (=n,)>n,(=n))

Layer thickness d = Quarter of wavelength or 2, /4
Zlayer =4 /n; 2 _1s the free space wavelength at which the mirror

is required to reflect the incident light, » = refractive index of
layer.

Reflected waves from the interfaces interfere constructively and
give rise to a substantial reflected light. If there are sufficient
number of layers, the reflectance can approach unity at 4 .
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QWQD 1 1]2 1 12 7 7F
4 < )

B "(7 -« — 1z

ol = -

D

g High Low High Low cf o
my Fig y Fg
«~N=1 e N=2—

Substrate

r , for light in layer 1 being reflected at the 1-2 boundary is
r,=(n,—n)/(n +n,) andis a positive number indicating no phase
change.

r,, for light in layer 2 being reflected at the 2-1 boundary is

r,, =(n,—n)/(n,+n)whichis -r , (negative) indicating a = phase change.
The reflection coefficient alternates in sign through the mirror

The phase difference between 4 and B is

0+m+2kd =0+m+2Q2nn/)A/An)= 2z

Thus, waves 4 and B are in phase and interfere constructively.
Dielectric mirrors are widely used in modern vertical cavity surface
emitting semiconductor lasers.
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Reflectance (%)

it

100-
380
60-
10-

20 -

«d—s>e—d—><—d, d,
1::)2 T O Dielectric Mirror
D-D — | or Bragg Reflector
High Low High Low o) o
1 - 2 ) 1N=2 3 X

\
|
\
|
\
|

N=10, n,/n, = 2.35/1.46

\}N 10, 2,/n, = 1.95/1.46

_ N=6,n,/n,=1.95/1.46

0
1.20

1.30

\/
m I ! T
140 150 160 170 180 1.90
! Wavelength (um)— :
|
< AA >:
|
!

2.00 2.10

v

AL = Reflectance bandwidth

(Stop-band for transmittance)

136



Dielectric Mirror or Bragg Reflector

Consider an “infinite stack”

dl—\ d2—><—d1—><—d2—> /_
1 il 2 28 i 2 2 7
High Low High Low High Low |~ /-]
n n, n n, n, n, Substrate
~—N=1 >< N=2——>
n, n,
> >
; ) —
B €<——= z
High Low

Unit cell \

This is a “unit cel

I"
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Dielectric Mirror or Bragg Reflector

ny

n,

>
) —

>
A
B <€— <
High Low
Unit cell

For reflection, the phase difference between A and B must be

2k d +2kd,

/ AN

2Q2nn /N)d, + 2(2nn /A)d, =

-

m(2m)

m(27m)

nld1 + nZd2

mAi/2
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Dielectric Mirror or Bragg Reflector

ny

n,

>

O

n1d1 +n,

<

High

Low

a’1 = /1/4111

Unit cell

d =1/2

[2

d, = Mdn,

Quarter-Wave Stack

d,=4/4n andd,=i/4n,
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Dielectric Mirror or Bragg Reflector \;

<—%ﬂ—»<——%6—9<—4ﬂ—9«—%@——)

1 112 2

SIS
AAA
A
A

_71/__.

1 112 2

o | High Low High Low .
n, n, n, n, Substrate
<N = > < N=2——>
3 -2
2N 2N _
| n —(ny/ny)m, AA n —n,

_nlzN +(n, /n3)n22N_

— = (4/m)arcsin
A n +n,
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Example: Dielectric Mirror N/

A dielectric mirror has quarter wave layers consisting of Ta,O, with n = 1.78 and SiO, with
n, = 1.55 both at 850 nm, the central wavelength at which the mirror reflects light. The
substrate is Pyrex glass with an index n_=1.47 and the outside medium is air with n = 1.
Calculate the maximum reflectance of the mirror when the number N of double layers is 4
and 12. What would happen if you use TiO, with n_ = 2.49, instead of Ta,O.? Consider the N
=12 mirror. What is the bandwidth and what happens to the reflectance if you interchange
the high and low index layers? Suppose we use a Si wafer as the substrate, what happens to

the maximum reflectance?

Solution

n,=1 for air, n,=n,=178,n,=n =155n,=n_=1.47,N=4.For 4 pairs of
layers, the maximum reflectance R4 is

1 (1.78)* —(1/1.47)(1.55)*
P78 + (1/1.47)(1.55)%®

=0.4 or 40%

141



v

Solution

N =12. For 12 pairs of layers, the maximum reflectance R, is

| (1,78 —(1/1.47)(1.55)*"

- = 0.906 or 90.6%
(1.78)2™ 4 (1/1.47)(1.55)2" ’

RIZ

Now use TiO, for the high-n layer with n, =n = 2.49,
R,=94.0% and R , = 100% (to two decimal places).

The refractive index contrast is important. For the TiO,-Si0, stack we only need 4 double
layers to get roughly the same reflectance as from 12 pairs of layers of Ta,0.-S10,. If we
interchange n,, and n, in the 12-pair stack, i.e. n, = n, and n, = n_, the Ta O-SiO, reflectance
falls to 80.8% but the TiO,-Si0, stack is unaffected since it is already reflecting nearly all the
light.
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Solution \;

We can only compare bandwidths A/ for "infinite" stacks (those with R = 100%)
For the TiO,-SiO, stack

n, —n,

AA = A (4/m)arcsin
n, +n,

AL = (850 nm)(4/)arcsin 249 =155 =254nm

2.49+1.55

For the Ta,0,-SiO, infinite stack, we get A/ =74.8 nm

As expected A4 is narrower for the smaller contrast stack
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Complex Refractive Index 4

E Medium al
ldz
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Complex Refractive Index

/\‘ . —»k | Consider k=k' - jk"

J V/V/V,\LV— - E=F exp(—k"z)expj(wt = k'z)

I o< |E|* o exp(—2k"z)

The complex refractive index N We know from EM wave theory

with al.‘eal part n and imaginary e =¢g' _jg " and N = ¢ 1/2
part K is defined as the ratio of r r r r
the complex propagation constant

in a medium to propagation N=n— ]K = k/ ko = (1/ ko)[k’ - jk"]

constant in free space.
N=n-jK =,/¢, :\/8; — je!
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Reflectance B Medim

e =¢'—je" and N=¢!?
r r v

r

N=n-jK

n:—-K*= ¢! and 2nK=¢"

n—jK-1 (n-17>+K’
n—jK+1 (n+1)>+K°

R =

The real part n 1s simply and generally called the refractive index and K 1s
called the extinction coefficient.
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Complex Refractive Index for CdTe \;

100 — — 10
E n :
7 - n
K - I
O.l—E
. o
[ ]
0.01—
= CdTe
0005 lIlIIIII||IIIII|III’IIIII!IIIIIIIII[!IIIIillIIHI
20 40 60 80 100 120

Wavelength (um)

CdTe is used in various applications such as lenses, wedges, prisms, beam splitters,
antireflection coatings, windows etc operating typically in the infrared region up to 25
um. It is used as an optical material for low power CO, laser applications.
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Complex Refractive Index

Nzn—sz\/g:\/g;—jg;’

|

|

|
I()(); : gl() 2 2

. " -, n—K=¢g' and 2nK=g"
0] : ?

= 1 E_
K 7 ; -

, ! , 2
'3 : : - jK-1 (m-1)°+K?

| p—

I 2 2
< —fK)+1  (n+1)’+K
O'Ol“ CdTe
0.005 BEE AR RS ERAR T NERREARRIRNERREE ‘

20 40 60 80 100 120

Wavelength (pum)

88 um
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Calculate the absorption coefficient a and the reflectance R of CdTe at the Reststrahlen peak,
and also at 50 um. What is your conclusion?

Example: Complex Refractive Index for CdTe

Solution: At the Reststrahlen peak, 1= 70 um, K= 6, and n = 4. The free-space
propagation constant is

k_ =2mn/A=2m/(70x107° m) = 9.0x10* m™'
The absorption coefficient a is 2k,
a=2k"= 2k K = 2(9.0x10* m~1)(6) = 1.08x106 m™!

which corresponds to an absorption depth 1/a of about 0.93 micron.
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Solution continued: At the Reststrahlen peak, A= 70 um, K= 6, and n = 4, so that \;

B (n—1°+K"’ _(4- 1)> +6°

~0.74 or 74%
n+1)>+K> (4+1) +6

AtA=50 um, K =0.02, and n = 2. Repeating the above calculations we get

a= 5.0 x10°m™!

13

0.1

R=0.11 or 11 %

0.01 -
0005 .—IIII|II!|IIIII|II|IIIIII'IIII|II|I|IIIIIII|I|IIII

20 40 60 80 100 120
Wavelength (um)

There is a sharp increase in the reflectance from 11 to 72% as we approach the Reststrahlen
peak
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Temporal and Spatial Coherence

Amplitude
—00 <— = i
" P 0
—> Time v, =B
Amplitude
</ =cAt——> :
(b) /\/\/\/\/ SYAVEVAY, ﬂ
= a2 D
—> Time —> Space i Yo
Field Av = 2/At
(C) Q Amplitude
i Time T ST I
> U

(a) A sine wave is perfectly coherent and contains a well-defined frequency v _. (b) A finite
wave train lasts for a duration A7 and has a length /. Its frequency spectrum extends over
Av = 2/At. 1t has a coherence time A¢ and a coherence length A. (c) White light exhibits

practically no coherence.
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Temporal and Spatial Coherence \;

1 Al > Amplitude
e~ | A 1 Gaussian
| g, | 5 distribution
\l UO E
.
—— A
- I ' :
s L i
: . > U
g 7/ Lo
N .(—h.
~ ”~
G Gaussian envelope
Av ~1/At
Gaussian wave packet Spectrum
A D ~ FWHM spreads

At
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Temporal and Spatial Coherence

No interference | Interference \ No interference
e At >

O N AVaVaVaVaVaVaVaVaVaV
NaVAVaVaVaVaVaN aVaVaV.

—> Time

Source

/&
(b) > C Spatially coherent source

Q

AVAVAVAVIRVAVARAVAVIRVAVAVAVA
) AN LN ANNNNAN \N— ¢ An incoherent beam

VAYAVAVAVAVAVAVARVARAVAVELV,

—> Space

(a) Two waves can only interfere over the time interval Az. (b) Spatial coherence involves
comparing the coherence of waves emitted from different locations on the source. (¢) An

incoherent beam

153



Temporal and Spatial Coherence
At = coherence time

[ = cAt = coherence length

For a Gaussian light pulse

AU ~ 1

At
/X

Spectral width

Pulse duration
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Temporal and Spatial Coherence

At = coherence time 1

AL =~ —
[ = cAt = coherence length At

Na lamp, orange radiation at 589 nm has spectral width Ao =
5x10! Hz.

At =1/ Av =2x10" s or 2 ps,
and 1ts coherence length [ = cAg,
[ = 6x10* m or 0.60 mm.

He-Ne laser operating in multimode has a spectral width around
1.5%x10° Hz, At = 1/Av = 1/1.5%10” s or 0.67 ns

[ = cAt=0.20 m or 200 mm.
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Interference

4

Source 2

E, =E_sin(wt—kr,—¢,) and E, =E_sin(wt—kr,—¢,)

Interference results in E = E | + E2

E-E=(E, +E,)-(E, +E,)=E’ +E; +2E E,
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Interference \;

Vo B, . . :
) /\{\/ Resultant intensity / is
o

_ 1/2
; I=1 +1,+2(l1)""coso

E NN

B
W

N 8=2mn (5‘:(2'»1*1)7!/ 0= k(rz—rl) + ((02—(01)

2
Source 2

Phase difference due to optical path difference

Constructive interference Destructive interference

_ 1/2 _ _ 1/2
| =1 +1,+2(1) and | =1 +1=2(1)

m mi

If the interfering beams have equal irradiances, then

| =4 | . =0

max 1
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Interference between coherent waves \;

Resultant intensity / is

I=1+1,+2(1,)"cosd

o= kir,—r) + (p,—9,)

Interference between incoherent waves

I=Il+l2
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Interference between coherent waves \’

Resultant intensity / is

ey
1 mAPF Ny
i ) 3 _ 1/2
EAAT AA I=1 +1,+2(I1)""coso
] 1]
E /\/\/ T

\ 0=2mx ()'f(2mil)7r/ 5 = k(rz —_ rl) + (¢2 —_ ¢ 1)

y Young’s fringes
A e
1
: Light —
—E—»-'— S ' = intensity
A collimated | pa\ttem -
laser beam | >
—— —

: Bright fringe-
0 Dark fringe
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Fabry-Perot
Optical Cavity

Charles Fabry (1867-1945), left, and Alfred Perot (1863-1925), right, were the first French physicists to con-
struct an optical cavity for interferometry. (Perot: The Astrophysical Journal, Vol. 64, November 1926, p. 208,
courtesy of the American Astronomical Society. Fabry: Courtesy of Library of Congress Prints and Photographs
Division, Washington, DC 20540, USA.)

This is a tunable large aperture (80 mm) etalon with
two end plates that act as reflectors. The end plates
have been machined to be flat to A/110. There are
three piezoelectric transducers that can tilt the end
plates and hence obtain perfect alignment.
(Courtesy of Light Machinery)
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Optical Resonator

Fabry-Perot Optical Cavity

Optical cavity Relative intensity
M, M, m=1 /
. m=2
/\__/
C—%}‘:
m=38
B /\/\/\/\/
Mirror L Mirror

(a) (b)

Schematic illustration of the Fabry-Perot optical cavity and its properties. (a)
Reflected waves interfere. (b) Only standing EM waves, modes, of certain
wavelengths are allowed in the cavity. (¢) Intensity vs. frequency for various modes.
R is mirror reflectance and lower R means higher loss from the cavity.

Note: The two curves are sketched so that the maximum intensity is unity
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Optical Resonator

Fabry-Perot Optical Cavity

Optical cavity Relative intensity
Ml M2 m=1 A

I A li —/—\— 1 — (\—Uf _)\ n\)/RzOS

: m=2 :' 1 R~04
l I /—\/ ; \ S
|
m=8
B WA/
Mirror L Mirror

(a) (b)

Each allowed EM oscillation
IS a cavity mode
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Optical Resonator Fabry-Perot [ 2 e '{
Optical Cavity D'
(B

A + B =A + Ar’exp(—j2kL)

- -
< >

L
=A+B+...=A+Arexp(—j2kL) + Ar'exp(—j4kL) + Ar®exp(—jokL) + ...

- A
W —r? exp(—j2kL)
l
/ cavity 2 [O - 2 ]max - ; 2
* (1-R)” +4Rsin” (kL) (1-R)

\sin@
Maxima at kK L = mrx N AT

m T

cavity

m = 1,2,3,...integer
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Optical Resonator Fabry-Perot Optical Cavity

r : BU’ .E
]O [0
] cavity — 2 - 2 ]max = 2
(1-R)” +4Rsin" (kL) (1-R)

Maxima at kmL = MmT

m=1,2,3,...1nteger

(2n/A )L = mn

mQ, /2) =L

164



Relative intensity

Uy —> e
] — f : R~08
lﬂ“ ln‘ :n‘
ll ! l' \ :, I \/R ~ 0.4
I “ ! “ !
I [} NP
I} \ 7 \ 7 ' 50’71
-—, \h—’ \h_’ \s
| | - . e
U, 1 U, U +1

v =m(c/2L) = mo = Mode frequency
m = integer, 1,2,...

O, =free spectral range = ¢/2L = Separation of modes

5Um _ Ff F— F = Finesse

~ 1R R =Reflectance (R > 0.6)
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Fused silica etalon
(Courtesy of Light Machinery)

A 10 GHz air spaced etalon
with 3 zerodur spacers.
(Courtesy of Light Machinery)
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Fabry-Perot etalons can be made to operate from UV to IR wavelengths with optical
cavity spacings from a few microns to many centimeters
(Courtesy of IC Optical Systems Ltd.)
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Relative intensity \;

A
D R~038
I““ ,n\‘ 'n\)/
", ", Y- R=~04
(] ] ] |/
! “ ! “ !
' ¢ NP
P \ B \ 7 \ 5Um
-—, \h—, \h—’ \s
| |' P e
U, 1 U, U +1

Quality factor Q is similar to the Finesse F

0 - Resonant frequency _ Y _r
Spectral width oL

m
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Optical Resonator is also an optical filter r

Only certain wavelengths (cavity modes) are transmitted

Partially reflecting plates

iz N Transmitted light
A

D
Y

\_/

- . ﬂ H
Input ligh> 'C O ,—» Output lig>
- )
e, > _J
< z/ > : - I IL > A

Fabry-Perot etalon m—1 m

(1-R)°
[ transmitted — ] incident 2 - 2
(1-R)" +4Rsin" (kL)
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Introduction to Diffraction \’

Airy rings are a diffraction pattern clearly visible when light passes through a circular

aperture

e The diffracted beam does NOT correspond to the shadow of the aperture

e Instead the light imaged passed the aperture is the result of both light passing
through the aperture and light scattered off the edges. The scattered light generates
an interference pattern in the image

e Diffracted light from a distance generates the image in a planer wavefront:
Fraunhofer Diffraction

e Diffracted light from a near by aperture images the surface with significant
wavefront curvature: Fresnel Diffraction

A light beam incident on a small Light intensity pattern

circular aperture becomes diffracted
and its light intensity pattern after
passing through the aperture is a
diffraction pattern with circular bright
rings (called Airy rings). If the screen
is far away from the aperture, this Incident light wav
would be a Fraunhofer diffraction
pattern.

Diffracted be

Circular aperture
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Introduction to Diffraction

Incident plane wave

A secondary
wave source

New
wavefront
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. Gl ' Another new
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(a) Huygens-Fresnel principles states that each point in the aperture becomes a
source of secondary waves (spherical waves). The spherical wavefronts are
separated by A. The new wavefront is the envelope of the all these spherical

wavefronts.

(b) Another possible wavefront occurs at an angle 0 to the z-direction which is a

diffracted wave.
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Introduction to Diffraction

Incident

light wave Ipcident
Light emitted from a point source ; B ¢ light wave
Py | / P>
- —jksin@ : b
Ex(§)e” - y £ e
_ Y —jksing & L
1 Y ' e
Ce~/ksinf, sin(gkasin 9) T —9 5 1 L
—kasin @ : '
2 Light intensity
The single slit diffraction equation yields an intensity (@) (b)
0 ) 2 (a) The aperture is divided into N number of
C'asin{; kasing oint sources each occupying dy with
16) = = I(0)sinc2(B); B = !(kasi potnt
©) L kasin® (O)smer(R); o= (emsmmic) amplitude o< Jy.

With zero intensity points at

sin€=m—}L
a

H=%1127...

sin(9=1.22i
D

where D is the diameter of the aperture

(b) The intensity distribution in the received
light at the screen far away from the aperture:
the diffraction pattern
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Image Resolution \’

Screen

Resolution of imaging systems is limited by diffraction effects. As points S and S, get closer,
eventually the Airy disks overlap so much that the resolution is lost.

According to the Rayleigh criterion, the two spots are just observable when the principle maximum of
one diffraction pattern coincides with the minimum of another. This minimum is obtained by the angular
radius of the Airy disk, with D is the diameter of the aperture:

sin¢9:1.22i
D

The rectangular aperture of dimensions a X b on
the left gives the diffraction pattern on the right.
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Diffraction Gratings

Bragg Diffraction Condition
dsin@ =mA
pit= Ol 2 48,
For light incident at an angle
d(sind, +sinf)=mA
m=0411243...

<

Single slit
difftaction

One possible
diffracted beam

. envelope ~
Incident .
light wave . ay, \,"<

A /
_9 S, ¢ \—#
: ({1 g ‘\
i dsin@ o
- Y

Diffraction grating

Intensity €——

(a) (b)

(a) A diffraction grating with N slits in an opaque
scree. (b) The diffracted light pattern. There are
distinct beams in certain directions (schematic)

>

First-order
Zero-order

Incident

light wave . % First-order

() Transmission grating

v

I_nc1dent m=1 First-order
light wave
= ‘ m=0 Zero-order
el o 4\ .- m= -1 First-orde

(b) Reflection grating

(a) Ruled periodic parallel scratches on a glass serve
as a transmission grating. (b) A reflection grating. An
incident light beam results in various "diffracted"

beams. The zero-order diffracted beam is the normal

reflected beam with an angle of reflection equal to the

angle of incidence.

m=2 Second-order

m=1 First-order

m=0  Zero-order
m=-1 First-order
m=-2 Second-order

First order

Normal to
Normalto grating plane
face

1
1
r-
'
1
1
1

Blazed (echelette) grating.
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Thank you!
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