American Pronunciation of Mathematics

Symbols	Pronunciation
2^{3}	two cubed
6^{2}	six squared
7^{5}	seven to the fifth power, or seven to the fifth
$\sqrt{25}$	the square root of twenty-five, or twenty-five to the one half power
$\sqrt[3]{27}$	the cube root of twenty-seven
$\sqrt[8]{32}$	the eighth root of thirty-two
$a^{2}+b^{2}=c^{2}$	a squared plus b squared equals c squared, or The Pythagorean Theorem
$\frac{1}{2}$	one half
$\frac{2}{3}$	two thirds
$\frac{5}{8}$	five eighths
$\frac{x^{2}+3}{x}$	the quantity x squared plus three (pause) divided by x, or x squared plus three (pause) all over x
$\sin ^{2} x$	sine squared of x
$\sin \left(x^{2}\right)$	sine of x squared
$(\sin x)^{2}$	sine of x (pause) quantity squared, or sine of x all squared
$\arcsin (2 \pi)$	arcsine of two pi
$\tan ^{-1} x$	inverse tangent of x
$\log _{2} 9$	log base two of nine, or logarithm base two of nine, or log nine base two
$\ln 2$	natural \log of two, or natural logarithm of 2 , or log base e of 2 , or "L N" of two
e^{x}	e to the x, or the exponential function
$\binom{5}{2}$	five choose two

$$
\begin{array}{cl}
f(x) & f \text { of } x \\
f^{-1}(x) & f \text { inverse of } x \\
f^{\prime} & f \text { prime, or the derivative of } f \text {, or the first derivative of } f \\
f^{\prime}(x) & \begin{array}{l}
f \text { prime of } x, \text { or the derivative of } f \text { with respect to } x \text {, or } \\
\text { the first derivative of } f \text { with respect to } x
\end{array} \\
f^{\prime \prime}(x) & \text { the second derivative of } f \text { with respect to } x \\
\frac{d f}{d x} & \begin{array}{l}
\text { "D F D X", or the derivative of } f \text { with respect to } x, \text { or } \\
\text { the first derivative of } f \text { with respect to } x
\end{array} \\
\frac{d^{2} f}{d x^{2}} & \begin{array}{l}
\text { "D" squared "F D X" squared, or the second derivative of } f \text { with respect to } x \\
y=(x-2)^{(x+1)} \\
y \text { equals the quantity } x \text { minus two (pause) all raised to the quantity }
\end{array} \\
f(z)=(7+z)^{\frac{1}{z}} & f \text { of } z \text { equals the quantity seven plus } z \text { raised to the one over } z \text { power } \\
\sum_{i=1}^{\infty} x^{i} &
\end{array}
$$

- the sum from i equals one to infinity of x to the i
- the sum of the quantity x to the i, for i equals one to infinity
$\lim _{x \rightarrow \infty} \frac{x}{\sin x}$
- the limit as x goes to infinity of x over sine x
- the limit as x tends to infinity of x divided by sine x
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}\right)\left(\frac{2}{n}\right)$
- the limit as n goes to infinity, of the sum from i equals one to n, of two i over n times two over n
- the limit as n goes to infinity, of the sum of the quantity two i over n times two over n, for i equals one to n

