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Chapter 3

2d Random Vectors

3.1 Generalities and dimension 2
Definition 3.1.1

Let Ω be a probability space. An n dimensional (real) random vector is a map X from Ω valued
in IRn, with each component being a rrv Xi.

Exemple : Let E be the experiment where one observes the length of a program submitted for running, to-
gether with its running time. Then elements of space Ω are of the form ω = (n, t) where n is the number of
lines in the program and t the running time in seconds. Let X = (X1, X2), with X1(ω) = n and X2(ω) = t.
This is a 2d random vector. Here X1 is a drv and X2 is a crv.

We say that a random vector is continuous if all its components are so, and discrete if this is so for tis
components.

To simplify, we only consider in general the case of 2d random vectors .
Thus here n = 2 .

Moreover, we shall only deal mostly with continuous rv .
Let us first introduce the definition

Definition 3.1.2

The joint distribution function (or more simply the joint distribution ) FX,Y(x, y) of two arbitrary
random variables X and Y is defined by

FX,Y(x, y) = F(x, y) = P(X ≤ x, Y ≤ y)

Properties
1.

F(−∞, y) = 0, F(x,−∞) = 0, F(+∞,+∞) = 1

2.
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P(x1 < X ≤ x2, Y ≤ y) = F(x2, y)− F(x1, y)

et

P(X ≤ x, y1 < Y ≤ y2) = F(x, y2)− F(x, y1)

3.

P(x1 < X ≤ x2, y1 < Y ≤ y2) = F(x2, y2)− F(x1, y2)− F(x2, y1) + F(x1, y1)

Definition 3.1.3

If (X, Y) is a random vector, we say that X and Y are independent random variables if

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all events A and B.

On can show that
Proposition 3.1.1

If X and Y are two independent rv, then g(X) and h(Y) are also independent, for any continuous
functions g and h.

et
Proposition 3.1.2

X and Y are independent iff
FX,Y(x, y) = FX(x)FY(y), ∀(x, y)

3.2 The case of a couple of continuous rv

In this section, (X,Y) is a couple of continuous rv .

Definition 3.2.1

If Z=(X,Y) is a continuous random vector, we say that fX,Y is a joint probability density function
of the couple (X,Y) if, for any event A, we have

P(A) = P(Z ∈ A) =
∫ ∫

A
fX,Y(x, y)dxdy

Note that
fX,Y(x, y)dxdy ' P(x < X ≤ x + dx, y < Y ≤ y + dy)

In particular fX,Y is positive. Moreover, its integral is 1, which means that it is a (physical) density.
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In particular,

FX,Y(x, y) =
∫ x

−∞

∫ y

−∞
fX,Y(u, v)dudv

Note that we get

fX,Y(x, y) =
∂2FX,Y(x, y)

∂x∂y

From FX,Y, we recover

FX(x) = P(X ≤ x) = P(X ≤ x, Y < +∞) = FX,Y(x,+∞)

and similarly
FY(y) = FX,Y(+∞, y)

These are the marginal distribution functions .
Note also that

fX(x) = ∂xF(x,+∞) et fY(y) = ∂YF(+∞, y)

Marginal statistics
Finally, note that

fX(x) = ... =
∫ +∞

−∞
fX,Ydy

and similarly for fY(y). These are the marginal probability density functions .
One can show that

Proposition 3.2.1

X and Y are independent iff

fX,Y(x, y) = fX(x) fY(y) if (X,Y) a continuous random vector

Exemple : (Buffon needle) A thin needle of length 2a is thrown at random on an horizontal plan, recovered
with parallel lines (to the y axis) with inter-distance of 2b, with b > a. One can show that the probability
that the needle touchs one of these lines is 2a/πb.
In terms of rv, let us introduce the rv X, distance from the center of the needle to the closest line, and the rv
Θ given by the angle between the needle and the direction orthogonal to the lines (that is in the direction
of the x axis). We can assume that the rv X and Θ are independent, that X is uniform over (0, b) and that Θ
is uniform over (0, π/2). We deduce that

f (x, θ) = fX(x) fΘ(θ) =
1
b

2
π

, 0 ≤ x ≤ b, 0 ≤ θ ≤ π/2

and 0 elsewhere. Thus the probability that the point (X, Θ) will be in a region D ⊂ R = [0, b]× [0, π/2]
will be the area of D multiplied by 2/πb.
Here, the needle will intersect one of the lines if X < a cos Θ. Thus

p = P(X < a cos Θ) =
2

πb

∫ π/2

0
a cos θdθ =

2a
πb

5



3.3. BI-NORMAL LAW: INTRODUCTION CHAPTER 3. 2D RANDOM VECTORS

One can use this result to find experimentally the number π using the frequency interpretation of p. If the
needle is thrown n times, and if it intersects one of the lines ni times, then

p =
2a
πb
' ni

n
et donc π ' 2an

bni

Of course, experimentally means using numerical simulation.
�

In fact we have also
Proposition 3.2.2

Let (X,Y) be a continuous random vector. Assume that X× Y(Ω) is a rectangle ]a, b[×]c, d[. Then
X and Y are independent iff we can write

fX,Y(x, y) = g(x)h(y)

with g(x) > 0 for x ∈]a, b[ and h(y) > 0 for y ∈]c, d[.

Exemple : Circular symmetry We say that the joint density of two rv X and Y is radial if it depends only on
the distance, that is

f (x, y) = g(r) with r =
√

x2 + y2

Let us show that if the rv X and Y are circular symmetric and independent, then they are normal laws with
null mean and equal variances.
Indeed, the independance implis that

g(
√

x2 + y2) = fX(x) fY(y)

Deriving this relation wrt x, and dividing the result by xg(r) = x fX(x) fY(y), we get

1
r

g′(r)
g(r)

= α = constant

thus we deduce that g(r) = Aeαr2/2, and going back to f , we can show that X and Y are normal laws with
null mean and variance σ2 = −1/α. �

3.3 Bi-normal law: introduction
Definition 3.3.1

We say that two rv are jointly normal or bi-normal if their joint density is given by

f (x, y) = Aexp{− 1
2(1− r2)

[
(x− µ1)

σ2
1

− 2r
(x− µ1)(y− µ2)

σ1σ2
+

(y− µ2)2

σ2
2

]}
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where the constant A is given

A =
1

2πσ1σ2
√

1− r2
avec |r| < 1

and the other parameters are given.
We denote (X, Y) ∼ N(µ1, µ2; σ2

1 , σ2
2 ; r) .

Note that the quadratic form in the exponential function is a negative quadratic form, because
|r| < 1.

One can show that µ1 et µ2 are the means of X and Y resp, while σ2
1 and σ2

2 are their resp. variances.
The interpretation of the parameter r will be given later on (this is in fact the correlation coefficient).

All these results amount to show that the marginal densities of X and Y are given by

fX(x) =
1

σ1
√

2π
e−(x−µ1)

2/2σ2
1 et fY(y) =

1
σ2
√

2π
e−(y−µ2)

2/2σ2
2

This fact comes by using the definition and integrating wrt x or y, and by writing that the term in
brackets can be written as

[ ] = [
x− µ1

σ1
+

y− µ2

σ2
]2 + (1− r2)

(y− µ2)2

σ2
2

Remarque : We have seen that, if X and Y are bi-normal, then their marginal laws X and Y are (separately)
normal. The reciproque is not true.

To see this,we shall construc two rv X1 and Y1 which are marginally normal but not bi-normal.
We start from two rv X and Y bi-normal, with a joint density f (x, y) given by the previous defini-

tion.
Consider the set D made by four symmetric small disks located in each of the 1/4 part of the plane.

For small enough ε, introduce a new function f1(x, y) being f1(x, y) = f (x, y) ± ε in D and f (x, y)
outside. Note that f1 is a density by construction. So it can be associated with two new rv X1 and Y1.

Note that X1 and Y1 are not bi-normal, as their joint density f1 cannot be written as a negative
exponential. On the other hand, X1 and Y1 are marginally normal. Indeed, it is enough to recall that
we just need to integrate wrt one of the variables x or y.

3.4 The case of a discrete couple of rv

Let Z = (X, Y) be a 2d random vector, so that que Z(Ω) is at most countable. Then we can write

Z(Ω)X×Y(Ω) = {(xj, yk), ...}

The notion of distribution function is defined similarly and in factLa notion de fonction de répartition
se définit de la même facon, et plus précisement,

Proposition 3.4.1

If (X, Y) is a discrete random vector , then

FX,Y(x, y) = ∑
xj≤x,yk≤y

pX,Y(xj, yk)
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Definition 3.4.1

If (X,Y) is a discrete random vector, the joint probability mass function of this vector is defined
by

pX,Y(xj, yk) = P(X = xj, Y = yk)

These are positive numbers. Summation over the two indices is equal to 1.
If A is an event wrt Z(Ω), that A ⊂ Z(Ω), then

P(A) = ∑
(xj,yk)∈A

pX,Y(xj, yk)

Using the total probability rule, we get

pX(xj) = ∑
k

P(X = xj, Y = yk) = ∑
k

pX,Y(xj, yk)

et de même
pY(yk) = ∑

j
P(X = xj, Y = yk) = ∑

j
pX,Y(xj, yk)

Functions pX and py are called the fmarginal probability pass functions ; they are obtained by sum-
ming iver one of the two indices.

Exemple : A box contains 6 transistors, among them 1 from brand A and 1 from brand B. Two transistors
are taken at random and with reset. Let X, resp. Y, the number of transistors with brand A, resp, brand
B among the two taken out. Set Z= (X,Y). Then the joint probability mass function pX,Y is given by the
following table:

y|x 0 1 2
0 16/36 8/36 1/36
1 8/36 2/36 0
2 1/36 0 0

Note that the rv X and Y both follow a binomial law B(n = 2, p = 1/6). Computing, we find for example
that P(X + Y ≥ 1) = 5/9.
�

Proposition 3.4.2

(X,Y) are two independent rv iff

pX,Y(xj, yk) = pX(xj)pY(yk)
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3.5 Moments of a couple of rv

Let X and Y be two rv, let a function g(x, y) : IR2 → IR. Introduce the rv

Z = g(X, Y).

Then the expectation of Z is given by

E(z) =
∫ +∞

−∞
z fZ(z)dz

which seems to require the computation of fZ in terms of the joint density fX,Y. In fact, it is often
useless because
Theorem 3.5.1

Let (X, Y) be a (continuous) randome vector, and Z = g(X, Y) . The expectation of Z is then
given by

E(Z) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) fX,Y(x, y)dxdy

This is coherent is the sense that if g depends only on x, then

E(g(X)) =
∫ ∫

g(x) fX,Y(x, y)dxdy =
∫

g(x) fX(x)dx

and we recover a known formula.
Remarque : If (X, Y) is discrete, then

E(Z) =
∞

∑
j=1

+∞

∑
k=1

g(xj, yk)pX,Y(xj, yk)

Remarque : We recover that the expectation is linear:

E(X + Y) = E(X) + E(Y)

and more generally that

E(
n

∑
k=1

akgk(X, Y)) =
n

∑
k=1

akE(gk(X, Y))

Note that in general
E(XY) 6= E(X)E(Y)

However, if X and Y are independent rv , then for all functions g1 and g2, we have

E(g1(X)g2(Y)) = E(g1(X))E(g2(Y))

Definition 3.5.1

The correlation of X and Y is defined to be the number E(XY). If this correlation is zero, we say
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that the rv X and Y are orthogonal , denoted by E⊥T.

The covariance of X and Y is defined by

Cov(X, Y) = σX,Y = E((X− E(X))(Y− E(Y))) = Cov(X, Y) = E(XY)− E(X)E(Y)

The correlation coefficient is defined by

Corr(X, Y) = $X,Y =
cov(X, Y)

σXσY

Remarque : i) Note that Cov(X, X) = var(X). Thus the covariance generalizes the variance, but could
change signe.

ii) If X and Y are independent, then Cov(X, Y) = 0.
ii’) Note that the rv X et Y on one hand, and X − µX and Y− µY on the other hand, have the same

covariances and correlation coefficients.
iii) The correlation coefficient is a measure without units, measuring the linear link between X and

Y. Ona can show that |$X,Y| ≤ 1. Moreover if Y = aX + b, then |$X,Y| = 1, that is |Cov(X, Y)| ≤ σXσY.
iv) If X and Y are independent, then $X,Y = 0. The converse is not always true. If $X,Y = 0 but X

and Y are not independent, we say that they are simply non correlated , that is

Cov(X, Y) = 0 that is $ = 0 that is E(XY) = E(X)E(Y)

For e.g. for X ∼ U(−1, 1) and Y ≡ X2, we find that they are not correlated. But thet of course not
independent.

iv) If X and Y are not correlated, then X− µX et Y− µY are orthogonal. If X and Y are not correlated,
and if µX or µY is zero, then X and Y are orthogonal.

Exemple : Let
fX,Y(x, y) = 2 if − y < x < y, 0 < y < 1

and 0 elsewhere. We find

fX(x) = 1− |x| if − 1 < x < 1 and fY(y) = 2y if 0 < y < 1

We find also that E(X) = 0 and that the two rv are not correlated. On the other hand, one can show that
they are not independent, as

fX(x) fY(y) 6= fX,Y(x, y)

�

Exemple : Let us show that the correlation coefficient of a bi-normal couple (X,Y) is the parameter r which
appears in the density. This explains why from now on, we shall denote it by $, and no more by r.
With the previous remarks, we may assume that µX = µY = 0. In this case as Cov(X, Y) = E(XY), it is
enough to show that E(XY) = rσ1σ2, to get the result on $. As

x2

σ2
1
− 2r

xy
σ1σ2

+
y2

σ2
2
= (

x
σ1
− r

y
σ2

)2 + (1− r2)
y2

σ2
2
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we get

E(XY) =
1

σ2
√

2π

∫
ye−y2/2σ2

2

∫ x
σ1
√

2π(1− r2)
exp[− (x− ryσ1/σ2)

2

2σ2
1 (1− r2)

]dxdy

The inner integral is a normal density with mean ryσ1/σ2 multiplied by x. Thus it is equal to ryσ1/σ2. Thus

E(XY) =
rσ1/σ2

σ2
√

2π

∫
y2e−y2/2σ2

2 dy = rσ1σ2

�
Proposition 3.5.1

If X and Y are independent, that is if

fX,Y(x, y) = fX(x) fY(y)

then they are not correlated.

This follows from the fact that in that case E(XY) = E(X)E(Y). More generally, if X and Y are
independent, then we have also

E(g(X)h(Y)) = E(g(X))E(h(Y))

which is not true if we assume only that X and Y are not correlated.
Remarque : If two rv are not correlated, they are not necessarily independent.

However, for a bi-normal couple of rv, non correlation is equivalent to independence. Indeed, if X
and Y are two bi-normal rv, with $ = r = 0, then f (x, y) = fX(x) fY(y).

To find joint statistics of X and Y, we need a priori to know their joint density. In practise, we
know only their joint mean and variances, that is we only the five parameters

µX, µY, σX, σY et $X,Y

If X and Y are bi-normal, then these five parameters suffice to determine uniquely f (x, y).

Exemple : Assume that the va X and Y are bi-normal, with

µX = 10, µY = 0, σX = 2, σY = 1 et $X,Y = 0, 5

Let us look to the joint density of
Z = X + Y and W = X ∗Y

We find
µX = µX + µY = 10, µW = µX − µY = 10

σ2
Z = σ2

X + σ2
Y + 2$X,YσXσY = 7, σ2

W = σ2
X + σ2

Y − 2$X,YσXσY = 3

E(ZW) = E(X2 −Y2) = 100 + 4− 1 = 103

$Z,W =
E(ZW)− E(Z)E(W)

σZσW
=

3√
7× 3

Moreover, we know that Z and W are bi-normal, as they are linearly depending on X and Y. Thus their
joint density is

N(10, 10; 7, 3,
√

3/7)

�
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Variance
Let

Z = a0 + a1X1 + ... + anXn

where the ai are given constants, and the Xi rv.
One can show that

Proposition 3.5.2

We have

Var(Z) =
n

∑
k=1

a2
kVar(Xk) + 2

n

∑
i=1

n

∑
k=1,i<k

aiakCov(Xi, Xk)

Note that the constant a0 does not playany role in the variance of Z. We may also write the above
formula as

Var(Z) =
n

∑
i=1

n

∑
k=1

aiakCov(Xi, Xk)

Particular cases;
i) If the rv Xk are independent (or even only non correlated), then

Var(Z) =
n

∑
k=1

a2
kVar(Xk)

ii) Assume that the rv Xk sont i.i.d (standing for independent and dientically distributed, that is
with same distribution function. Then, if

Sn ≡ X1 + ... + Xn

we have
E(Sn) = nE(X1) and Var(Sn) = nVar(X1)

Remarque : On the whole, we have
E(X + Y) = E(X) + E(Y)

If moreover the rv are independent, then

E(XY) = E(X)E(Y)

and
Var(X + Y) =ind Var(X) + Var(Y)

Note that in general std(X + Y) 6= std(X) + std(Y) even if X and Y are independent.

Remark 3.5.1

We have seen that if X and Y were bi-normal, then the sum aX + bY is also normal. We may show
also the following special case: if X and Y are independent and normal, then their sum X + Y is
also normal. In fact, we have the more difficult result (Cramer): if the rv X and Y are independent,
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if their sum is normal, then they are also normal.
�

One can also show that: if we know that the sum aX + bY is normal for all a and b, then the rv X
and Y are bi-normal. This is not true if we only admit a finite number of values for a and b.
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