Probability and Statistics

USTH-B2

Exercices Chapter 3

1. Let X and Y two dr variables given by their laws

x	0	1	2					
$p_{X}(x)$	$1 / 4$	$1 / 4$	$1 / 2$	and	y	-1	0	1
:---:	:---:	:---:	:---:					
$p_{Y}(y)$	$1 / 3$	$1 / 2$	$1 / 6$					

Assume that X and Y are independent. Compute $P_{Z}(z)$ with $Z \equiv X Y$.
2. Let (X, Y) be the discrete random vector whose joint law is given by

$X . . Y$	-4	2	7
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
5	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

(a) Compute the marginal laws.
(b) Compute the means of X and Y.
(c) Compute $\operatorname{Cov}(X, Y), \sigma_{X}, \sigma_{Y}$ and $\varrho(X, Y)$.
3. Let X be the discrete random variable given by its law

x_{i}	-2	-1	1	2
p_{i}	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Set $Y=X^{2}$.
(a) Compute the law of the drv Y.
(b) Compute the law of (X, Y).
(c) Compute $\operatorname{Cov}(X, Y)$ and $\varrho(X, Y)$.
4. We draw at random and with reset two numbers in $\{0,1,2,3\}$. Let X be smallest of these two numbers, and Y the biggest.
(a) Compute the law of the couple (X, Y).
(b) Compute the marginal laws.
(c) Are these rv independent?
(d) Compute $\operatorname{Cov}(X, Y)$.
5. Let (X, Y) be the dr vector whose probability law is given by

$$
p_{i j}=\operatorname{cij} \text { if }(i, j) \in\{1,2,3\}^{2} \text { and } 0 \text { otherwise }
$$

where c is a constant.
(a) Compute c.
(b) Compute $P(1 \leq X \leq 2, Y \leq 2), P(X \geq 2), P(Y<2)$.
(c) Find the marginal laws of X and Y.
(d) Are the rv X and Y independent?
6. Let

$$
f_{X, Y}(x, y)=3 / 2 x \text { if } 1 \leq x \leq y \leq 2
$$

and 0 elsewhere.
(a) Compute the marginal densities f_{X} and f_{Y}.
(b) Compute $P\left(X^{2}<Y\right)$.
7. Let

$$
f_{X, Y}(x, y)=(4 x y)^{-1 / 2} \text { if } 0<y<x<1
$$

and 0 elsewhere. Compute a) $f_{X}(x)$ and $\left.f_{Y}(y), b\right) P(X>1 / 2, Y>1 / 2)$.
8. Let

$$
f_{X, Y}(x, y)=2-x-y \text { if } 0<x<1,0<y<1
$$

and 0 elsewhere. Compute a) $F_{X, Y}(x, y)$, b) $f_{X}(x)$, c) $\operatorname{cov}(X, Y)$ and d) $P(X+Y<1)$.
9. Let the random couple (X, Y) defined by its joint density

$$
f(x, y)=2 \text { if } x \in D \text { and } 0 \text { elsewhere }
$$

with $D=\left\{(x, y) \in \mathbb{R}^{2}, x \geq 0, y \geq 0, x+y \leq 1\right\}$. Compute the marginal densities.
10. Let the random vector (X, Y) with density

$$
f(x, y)=c x y \text { if }(x, y) \in[1,4] \times[1,5] \text { and } 0 \text { otherwise }
$$

where c is a constant.
(a) Compute c.
(b) Compute $P((X, Y) \in] 1,2[\times] 2,3[$.
(c) Compute the marginal laws of X and Y.
(d) Compute the joint distribution function of (X, Y).
(e) Compute $P(X+Y<3)$.
11. Let the random vector (X, Y) with density

$$
f(x, y)=c\left(x^{2}+y^{2}\right) \text { if }(x, y) \in[0,1] \times[0,1] \text { and } 0 \text { elsewhere }
$$

where c is a constant.
(a) Compute c.
(b) Compute $P(X<1 / 2, Y>1 / 2)$.
(c) Compute $P((X, Y) \in B(0,1)$.
(d) Compute the marginal laws of X and Y .
12. Let the random vector (X, Y) with density

$$
f(x, y)=1 \text { if }(x, y) \in[0,1]^{2} \text { and } 0 \text { elsewhere }
$$

Compute the distribution function of $Z=X+Y$.
13. The input of a communication channel is a rv X which follows a gaussian law $N(0,1)$. The output Y is given by $Y=X+N$, where N is the noise, following a law $N\left(0, \sigma_{N}^{2}\right)$. Moreover, we assume that X and N are independent.
Compute the coefficient correlation $\varrho_{X, Y}$ of X and Y.
14. A computer generates random numbers X according to a law $N\left(0, \sigma^{2}\right)$. Set

$$
\begin{aligned}
& Y=X \text { if } X>0 \text { and } 0 \text { otherwise } \\
& Z=X \text { if } X \leq 0 \text { and } 0 \text { otherwise }
\end{aligned}
$$

(a) Is the sum $Y+Z$ gaussian ?
(b) Is the couple (Y, Z) following a bi-normal law?

