Probability and Statistics USTH-B2

Exercices Chapter 3

1. Let X and Y two dr variables given by their laws

[x	0	1	2	and	y	-1	0	1
[$p_X(x)$	1/4	1/4	1/2	anu	$p_Y(y)$	1/3	1/2	1/6

Assume that X and Y are independent. Compute $P_Z(z)$ with $Z \equiv XY$.

2. Let (X, Y) be the discrete random vector whose joint law is given by

<i>XY</i>	-4	2	7
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
5	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

- (a) Compute the marginal laws.
- (b) Compute the means of X and Y.
- (c) Compute Cov(X, Y), σ_X , σ_Y and $\varrho(X, Y)$.
- 3. Let *X* be the discrete random variable given by its law

ſ	x_i	-2	-1	1	2	
	p_i	1/8	3/8	3/8	1/8	

Set $Y = X^2$.

- (a) Compute the law of the drv *Y*.
- (b) Compute the law of (X, Y).
- (c) Compute Cov(X, Y) and $\varrho(X, Y)$.
- 4. We draw at random and with reset two numbers in {0, 1, 2, 3}. Let X be smallest of these two numbers, and Y the biggest.
 - (a) Compute the law of the couple (X, Y).
 - (b) Compute the marginal laws.
 - (c) Are these rv independent?
 - (d) Compute Cov(X, Y).
- 5. Let (X, Y) be the dr vector whose probability law is given by

$$p_{ij} = cij$$
 if $(i, j) \in \{1, 2, 3\}^2$ and 0 otherwise

where *c* is a constant.

- (a) Compute *c*.
- (b) Compute $P(1 \le X \le 2, Y \le 2), P(X \ge 2), P(Y < 2).$

- (c) Find the marginal laws of X and Y.
- (d) Are the rv X and Y independent?

6. Let

$$f_{X,Y}(x,y) = 3/2x$$
 if $1 \le x \le y \le 2$

and 0 elsewhere.

- (a) Compute the marginal densities f_X and f_Y .
- (b) Compute $P(X^2 < Y)$.
- 7. Let

$$f_{X,Y}(x,y) = (4xy)^{-1/2}$$
 if $0 < y < x < 1$

and 0 elsewhere. Compute a) $f_X(x)$ and $f_Y(y)$, b) P(X > 1/2, Y > 1/2).

8. Let

$$f_{X,Y}(x,y) = 2 - x - y$$
 if $0 < x < 1, 0 < y < 1$

and 0 elsewhere. Compute a) $F_{X,Y}(x, y)$, b) $f_X(x)$, c) cov(X, Y) and d) P(X + Y < 1).

9. Let the random couple (X, Y) defined by its joint density

$$f(x, y) = 2$$
 if $x \in D$ and 0 elsewhere

with $D = \{(x, y) \in \mathbb{R}^2, x \ge 0, y \ge 0, x + y \le 1\}$. Compute the marginal densities. 10. Let the random vector (X, Y) with density

$$f(x,y) = cxy$$
 if $(x,y) \in [1,4] \times [1,5]$ and 0 otherwise

where *c* is a constant.

- (a) Compute *c*.
- (b) Compute $P((X, Y) \in]1, 2[\times]2, 3[$.
- (c) Compute the marginal laws of X and Y.
- (d) Compute the joint distribution function of (X, Y).
- (e) Compute P(X + Y < 3).
- 11. Let the random vector (X, Y) with density

$$f(x,y) = c(x^2 + y^2)$$
 if $(x,y) \in [0,1] \times [0,1]$ and 0 elsewhere

where *c* is a constant.

- (a) Compute *c*.
- (b) Compute P(X < 1/2, Y > 1/2).
- (c) Compute $P((X, Y) \in B(0, 1)$.
- (d) Compute the marginal laws of X and Y.

12. Let the random vector (X, Y) with density

f(x, y) = 1 if $(x, y) \in [0, 1]^2$ and 0 elsewhere

Compute the distribution function of Z = X + Y.

13. The input of a communication channel is a rv X which follows a gaussian law N(0,1). The output Y is given by Y = X + N, where N is the noise, following a law $N(0, \sigma_N^2)$. Moreover, we assume that X and N are independent.

Compute the coefficient correlation $\rho_{X,Y}$ of X and Y.

14. A computer generates random numbers X according to a law $N(0, \sigma^2)$. Set

Y = X if X > 0 and 0 otherwise

Z = X if $X \le 0$ and 0 otherwise

- (a) Is the sum Y + Z gaussian?
- (b) Is the couple (Y, Z) following a bi-normal law?