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General facts

We have

Proposition 1.1

Let g : IR3 → IR of class C 1 and let S the level surface associated
to g and k ∈ IR, that is

S = {(x , y , z) ∈ IR3, s.t. g(x , y , z) = k}

Assume that S 6= ∅. Let (x0, y0, z0) ∈ S be fixed. Then the vector
∇g(x0, y0, z0) is normal to S at point (x0, y0, z0), in the following
sense : for any path c : [a, b]→ S, with c(0) = (x0, y0, z0), of
classe C 1, if we let v = c ′(0), that is the tangent vector to c at 0,
then ∇g(x0, y0, z0) and v are orthogonal that is
∇f (x0, y0, z0).v = 0.



Proof is easy.
One can then introduce the notion of the tangent plane to S at a
fixed point of S as being the plane going through this point and
normal to this vector. We have

Definition 1.1

Let g : IR3 → IR, C 1. Let k ∈ IR and S = {g(x , y , z) = k} the
level surface of height k, associated to g. Assume that S 6= ∅.
Then for all point (a, b, c) ∈ S, we define the tangent plane to S
at point (a, b, c) as being the plane with cartesian equation

∇g(a, b, c).(x − a, y − b, z − c) = 0



Parametrized surfaces

There exists surfaces of IR3 which are not graphs of functions.
Notion of parametrized surfaces which include in particular the
case of functions graphs.

Definition 1.2

A parametrized surface of IR3 is a map Φ : D → IR3, where
D ⊂ IR2. The corresponding surface is S =Φ(D).

Thus, if we denote by x , y , z the component functions of Φ, we
have

Φ(u, v) = (x(u, v), y(u, v), z(u, v))

Thus, in order to describe S , we need two variables u and v : we
can say that the dimension of S is two.
One can also say that Φ is a parametrization of S .
Note that this very similar to the previous chapter on paths.



Careful : make the difference between a parametrized surface,
which is a map from IR2 to IR3 and the corresponding ”surface”
which is a set of point in IR3.

Definition of a normal vector or a tangent plane to S as in the
case of level surfaces.
Let (u0, v0) be a fixed point in D. Fix u = u0 and consider the
path t ∈ IR→ Φ(u0, t).
Its image, that is the associated curve, is contained in S . A
tangent vector to this path, at point Φ(u0, v0) is

Tv = (∂vx(u0, v0), ∂vy(u0, v0), ∂vz(u0, v0))

Similarly, we introduce the vector

Tu = (∂ux(u0, v0), ∂uy(u0, v0), ∂uz(u0, v0))

These two vectors Tu and Tv are tangent to two curves of S at
point Φ(u0, v0).
This suggests to say that a normal vector to S at point Φ(u0, v0)
should be Tu ∧ Tv , unless it is zero.



Definition 1.3

We say (S , Φ) is regular at Φ(u0, v0) if Tu ∧ Tv 6= 0 at (u0, v0).
We say that this surface is regular if is regular all of its points.
In these cases, we say that ~n = Tu ∧ Tv is normal to S at point
Φ(u0, v0). And we call tangent plane to S at point Φ(u0, v0) the
plane with cartesian equation

~n.(x − a, y − b, z − c) = 0

where (a, b, c) = Φ(u0, v0).

Example 1.1

x = u cos v , y = u sin vz = u2 + v2. Find the tangent plane at
Φ(1, 0).



Special case : a surface S given by the graph of a function
g : IR2 → IR, C 1 and defined on a subset D of IR2.
One can check that a classical parametrization of S is given by :

Φ : (u, v) ∈ D → (x , y , z)

with
x = u, y = v , z = g(u, v)

We find

Tu = (1, 0, ∂ug(u, v), Tv = (0, 1, ∂vg(u, v))

Thus a normal vector is given by

~n(u, v) = Tu ∧ Tv = (−∂ug ,−∂vg , 1) 6= 0

Note that this parametrization Φ is regular. Note also that vector
~n always points in the upper direction.



Area of a surface

Let be given a (good) parametrized surface with a good initial set
D :
We want to define the notion of area of the surface (S , Φ) :

Definition 1.4

The area of (S , Φ) is the positive number given by :

area(S , Φ) =
∫ ∫

D
‖ Tu ∧ Tv ‖ dudv

Note that letter Φ appears in the above formula. We shall soon see
that this area does not depend on the change of parametrization of
S . Note that we have

(area(S , Φ) =
∫ ∫

D

√
| ∂(x , y)

∂(u, v)
|2 + | ∂(y , z)

∂(u, v)
|2 + | ∂(x , z)

∂(u, v)
|2dudv



Explanations :
Assume that D is a rectangle of IR2.
Let a partition of order n of D in small rectangles denoted by Rij .
Denote the four points of each of these rectangles by (ui , vj ),
(ui+1, vj ), (ui , vj+1) et (ui+1, vj+1), où 0 ≤ i ≤ n− 1 et
0 ≤ j ≤ n− 1.
Set Tui et Tvj for the values of Tu and Tv at points (ui , vj ).
Vectors ∆uTui and ∆Tvj are tangent to S at point
Φ(ui , vj ) = (xij , yij , zij ), with ∆u = ui+1 − ui et ∆v = vj+1 − vj .
These two vectors form a parallelogram denoted by Pij included in
the tangent plane to S . If n is large enough, we have a kind of
covering of S by these Pij .
When n is large enough, we have

area(Pij ) ' area(Φ(Rij ))

As

area(Pij ) '‖ ∆uTUi
∧ ∆vTvj ‖=‖ TUi

∧ Tvj ‖ ∆u∆v



we deduce by summing that the cover made by the Pij is

An =
n−1
∑
i=0

n−1
∑
j=0

aire(Pij ) =
n−1
∑
i=0

n−1
∑
j=0

‖ TUi
∧ Tvj ‖ ∆u∆v

This is a Riemann summation and then we can get the previous
definition.

Example 1.2

Let S be the cone whose one possible parametrization is given by
D = [0, 2π]θ × [0, 1]r and

Φ : (r , θ)→ (x , y , z)

with
x = r cos θ, y = r sin θ, z = r

We find that area(S , Φ) =
√

2π.



Example 1.3

Area of S (helicoidal surface ) with parametrization given by
D = [0, 2π]θ × [0, 1]r et

Φ : (r , θ)→ (x , y , z)

with
x = r cos θ, y = r sin θ, z = θ

Case of a surface given by a graph of a function.

area(S , g) =
∫ ∫

D

√
(∂uf )2 + (∂v f )2 + 1dudv



Particular case : area of surface obtained by revolution of the graph
of u = f (x) around x axis ; then

aire = 2π
∫ b

a
(| f (x) |

√
1 + [f ′(x)]2)dx

If the revolution is around y axis, we get

area = 2π
∫ b

a
(| x |

√
1 + [f ′(x)]2)dx

For the first formula : introduce the parametrization of S given by

x = u, y = f (u) cos v , z = f (u) sin v

on D defined by a ≤ u ≤ b et 0 ≤ v ≤ 2π.
For fixed u, (u, f (u) cos v , f (u) sin v) moves along a circle of
radius | f (u) | centered at (u, 0, 0). Then

∂(x , y)

∂(u, v)
= −f (u) sin v ,

∂(y , z)

∂(u, v)
= f (u)f ′(u),

∂(x , z)

∂(u, v)
= f (u) cos v



Scalar functions integrals over surfaces

Let (S , Φ) be a surface parametrized by

Φ : D ⊂ IR2 → IR3, Φ(u, v) = (x(u, v), y(u, v), z(u, v))

Definition 1.5

Let f : S → IR. Then we set the definition∫ ∫
Φ

f (x , y , z)dS =
∫ ∫

Φ
fdS ≡

∫ ∫
D

f (Φ(u, v)) ‖ Tu ∧Tv ‖ dudv

or equivalently∫ ∫
Φ

fdS =
∫ ∫

D
f (x(u, v), y(u, v), z(u, v))×

√
(

∂(x , y)

∂(u, v)
)2 + (

∂(y , z)

∂(u, v)
)2 + (

∂(x , z)

∂(u, v)
)2dudv



Example 1.4

In the helicoidal case and if f (x , y , z) =
√

x2 + y2 + 1, we get∫ ∫
Φ

f =
8

3
π

Example 1.5

If S is the graph of a function g C 1, then∫ ∫
g

fdS =
∫ ∫

D
f (x , y , g(x , y))

√
1 + (∂ug)2 + (∂vg)2ddxdy



Surface integrals of vector (valued) functions

Definition 1.6

Let F be a vector field, defined on S , a parametrized surface by Φ.
Then the surface integral of F on Φ, or the flux of F across Φ is
defined by ∫ ∫

Φ
F .dS =

∫ ∫
D

F .(Tu ∧ Tv )dudv

Example 1.6

IF D : {0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 2π} and Φ is given by

x = cos θ sin φ, y = sin θ cos φ, z = cos φ

then S is the unit sphere of IR3 ; if we introduce the vector field
~r = (x , y , z), then

∮ ∫
Φ r .dS = −4π.



Definition of ”orientation”

Definition 1.7

A oriented surface is a surface with ”two sides”, where one side
could be called the positive or exterior one, and the other side the
negative side or the interior one. This is so that at each point
(x , y , z) of this surface, there exists two unit normal vectors n1

and n2, n1(x , y , z) and n2(x , y , z) pointing in opposite directions,
n1 pointing towards the positive side, while n2 points towards the
negative side, in a continuous way. Thus, to specify a side of S , at
all point of S , we choose a unit normal vector ~n always pointing to
the exterior.

Remark 1.1

This definition rests on the fact that we should be able to talk
about the ”two sides” of the surface S .



Let Φ : D → IR3 be a parametrization of an oriented surface S .
Assume that S is regular at Φ(u0, v0), (u0, v0) ∈ D.
In that case, the vector Tu ∧ Tv (u0, v0) 6= 0,
‖ Tu ∧ Tv (u0, v0) ‖6= 0, and thus the vector Tu ∧ Tv (u0, v0) is
normal to S at point Φ(u0, v0).
We obtain an unit normal vector if we consider the vector
Tu∧Tv (u0,v0)
‖Tu∧Tv (u0,v0)‖ .

As the surface S is oriented, we have done the choice of a normal
vector field ~n always directed towards the same side, called the
positive one. Thus we have

Tu ∧ Tv (u0, v0)

‖ Tu ∧ Tv (u0, v0) ‖
= ∓~n(Φ(u0, v0))



Definition 1.8

With the above definitions, we say that Φ preserves the orientation
of S , if we have always the + sign in the above equality ; that is if
the vector Tu ∧ Tv always points towards the exterior (which is
already fixed as we have an oriented surface).
If, on the other hand, Tu ∧ Tv always points towards the interior,
we say that Φ reverses the orientation, that is we have always the
− sign in the above equality.

Example 1.7

Consider the unit sphere S : x2 + y2 + z2 = 1. Choose the exterior
side of S . Let Φ be the parametrization of S given by
D = {0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} and

x = cos θ sin φ, y = sin θ sin φ, z = cos φ

We find Tθ ∧ Tφ = −r sin φ. As sin φ ≤ 0, Tθ ∧ Tφ points always
to the interior. Thus Φ reverses the orientation.



Example 1.8

Let S be the graph of a function g. A normal vector at point
(x,y,z) to S is

Tu ∧ Tv = (−∂ug ,−∂vg , 1)

We get two unit normal vectors by setting

~n = ∓[(∂ug)2 + (∂vg)2 + 1]
1
2 (−∂ug ,−∂vg , 1)

The third component is always positive (if we choose the + sign).
Thus we can always choose the orientation of S by taking as the
+ side, the side where ~n points to.
In that case, Φ preserves the orientation.



Theorem 1.1

Let S be an oriented surface, and F a continuous vector field
defined on S .
1) If Φ1 and Φ2 are two parametrizations preserving the
orientations of S , then∫ ∫

Φ1

F .dS =
∫ ∫

Φ2

F .dS

2) IF Φ1 et Φ2 are two parametrizations reversing the orientation
of S , then ∫ ∫

Φ1

F .dS = −
∫ ∫

Φ2

F .dS

Note that for scalar functions f : IR3 → IR, we have always∫ ∫
Φ1

fdS =
∫ ∫

Φ2

fdS



Definition 1.9

1) Case of integrals of scalar functions. Let S be a parametrized
surface. Let f : IR3 → IR be a continuous function. Then, by
definition, we set ∫ ∫

S
fdS =

∫ ∫
Φ

fdS

where Φ is any but ”good” parametrization of S .
2) Case of integrals of vector functions. Let S be an oriented
parametrized surface. Let F : IR3 → IR3 be a vector field. Then we
set ∫ ∫

S+
F .dS =

∫ ∫
Φ

F .dS

where Φ is any but good paramatrization of S , preserving the
orientation of S . Similarly, we set∫ ∫

S−
F .dS =

∫ ∫
Φ

F .dS

wher Φ is any but good parametrization of S , reversing the
orientation de S .



Note that ∫ ∫
S+

F .dS = −
∫ ∫

S−
F .dS

The quantity
∫ ∫
S+ F .dS is called the flux of F across the

positively oriented surface S .
Final remark.
Let S be a regular and oriented surface, with Φ a parametrization
preserving the orientation. In particular, n = Tu∧Tv

‖Tu∧Tv ‖ is the unit

normal vector pointing to the exterior of S (positive side of S).
We get∫ ∫

S+
F .dS =

∫ ∫
Φ

F .dS =
∫ ∫

D
F .(Tu ∧ Tv )dudv =

=
∫ ∫

D
(

Tu ∧ Tv

‖ Tu ∧ Tv ‖
) ‖ Tu ∧ Tv ‖ dudv =

=
∫ ∫

D
(F .n) ‖ Tu ∧ Tv ‖ dudv =

∫ ∫
S
(F .n)dS



Thus

Proposition 1.2

With the above notations, we have∫ ∫
S+

F .dS =
∫ ∫

S
(F .n)dS

Careful : the first integral is a flux, that is a surface integral of a
vector functions, here F , while the second integral is the surface
integral of a sclar function, here F .n.
Applied to the case of a surface S given by the graph of a function
g , we get∫ ∫

S+
F .dS =

∫ ∫
D
[F1(−∂ug) + F2(−∂vg) + F3]dudv

where F = (F1, F2, F3) are the components of the vector field.


