Chapter 1

Vectorial Analysis: Big Theorems

1.1 Green Theorem in the plane

Consider a "simple region" in the plane, and more precisely a region of type 1,2 or 3 .
A region of type 1: this is a region such that x is between two constants while y is between two functions of x.

A region of type 2: roles of x and y are exchanged.
A region of type 3: symmetric region.
In particular its boundary is a simple close curve: we may find an associated map c : $[a, b] \rightarrow \mathbb{R}^{2}$ injective over $] a, b[$, with $c(a)=c(b)$. Such a curve can be equipped with two (running) directions: the anticlockwise direction, and then we denote by C^{+}this curve; and the clockwise direction, and then we denote by C^{-}this curve. Directions can be also associated with parts of such curves.
Let us begin with a simple lemma

Lemma 1.1.1 Let D be a region of type 1, that is such that

$$
D=\left\{a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)\right\}
$$

C its boundary and $P: D \rightarrow \mathbb{R}$ a C^{1} function. Then

$$
\int_{C^{+}} P d x=-\iint \partial_{y} p d x d y
$$

The lhs is a line integral.
Proof: We shall denote by C_{1} and by C_{2} the "horizontal curves" and B_{1} and B_{2} the "vertical" curves.

As

$$
D=\left\{a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)\right\}
$$

we have

$$
\begin{gathered}
\iint_{D} \partial_{y} P(x, y) d x d y=\int_{a}^{b}\left[\int_{\phi_{1}(x)}^{\phi_{2}(x)} \partial_{y} P(x, y) d y\right] d x= \\
=\int_{a}^{b}\left[P\left(x, \phi_{2}(x)\right)-P\left(x, \phi_{1}(x)\right)\right] d x
\end{gathered}
$$

Now, we parametrize C_{1}^{+}by

$$
x \in[a, b] \rightarrow\left(x, \phi_{1}(x)\right)
$$

and C_{2}^{+}by

$$
x \in[a, b] \rightarrow\left(x, \phi_{2}(x)\right)
$$

Then, by definition, we have

$$
\begin{aligned}
& \int_{C_{1}^{+}} P(x, y) d x=\int_{a}^{b} P\left(x, \phi_{1}(x)\right) d x \\
& \int_{C_{2}^{+}} P(x, y) d x=\int_{a}^{b} P\left(x, \phi_{2}(x)\right) d x
\end{aligned}
$$

In particular

$$
-\int_{a}^{b} P\left(x, \phi_{2}(x)\right) d=\int_{C_{2}^{-}} P(x, y) d x
$$

We deduce

$$
\iint_{D} \partial_{y} P(x, y) d x d y=-\int_{C_{1}^{+}} P(x, y) d x-\int_{C_{2}^{-}} P(x, y) d x
$$

As x is constant on B_{2}^{+}and B_{1}^{-}, we have

$$
\int_{B_{2}^{+}} P d x=0=\int_{B_{1}^{-}} P d x
$$

In conclusion, we obtain

$$
\begin{gathered}
\int_{C^{+}} P d x=\int_{C_{1}^{+}} P d x+\int_{B_{2}^{+}} P d x+\int_{C_{2}^{-}} P d x+\int_{B_{1}^{-}} P d x \\
=\int_{C_{1}^{+}} P d x+\int_{C_{2}^{-}} P d x
\end{gathered}
$$

and thus the result.

Similarly, we have

Lemma 1.1.2 Let D be a type 2 region, C its boundary and $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a C^{1} function. Then

$$
\int_{C^{+}} Q d y=\iint_{D} \partial_{x} Q(x, y) d x d y
$$

From these two results, we deduce
Theorem 1.1.1 Green Theorem in \mathbb{R}^{2}. Let D be a type 3 region, C its boundary, and $P, Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ two C^{1} functions. Then

$$
\int_{C^{+}} P d x+Q d y=\iint_{D}\left[\partial_{x} Q(x, y)-\partial_{y} P(x, y)\right] d x d y
$$

In order to apply this Theorem, a good way to remember that we are working with the positive orientation (anticlockwise ...) is to keep in mind that we travel along C so that we always keep the region D on our left.
To fix further notations, we shall always denote by ∂D what we have denoted by C^{+}above. Thus Green Theorem can be formulated as

$$
\int_{\partial D} P d x+Q d y=\iint_{D}\left[\partial_{x} Q(x, y)-\partial_{y} P(x, y)\right] d x d y
$$

There are many applications of this result. For example
Proposition 1.1.1 Area of a region: if C is a simple closed curve surrounding a region of \mathbb{R}^{2} where we may apply Green Theorem, then the area of this region D is given by

$$
\operatorname{area}(D)=\frac{1}{2} \int_{\partial D}(x d y-y d x)
$$

proof: Set $P(x, y)=-y$ and $Q(x, y)=x$. Then by Green Theorem, it follows that

$$
\begin{gathered}
\frac{1}{2} \int_{\partial D}(x d y-y d x)=\frac{1}{2} \int_{\partial D}-y d x+x d y \\
=\frac{1}{2} \iint_{D}\left[\partial_{x}(x)-\partial_{y}(-y)\right] d x d y \\
=\frac{1}{2} \iint_{D}(1+1) d x d y=\iint_{D} 1 d x d y=\operatorname{area}(D)
\end{gathered}
$$

Example 1.1.1 let us compute the area of te region enclosed by the curve C with equation $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$.
One may check that we get a parametrization of C with the positive orientation, by setting

$$
x=\cos ^{3} \theta \text { and } y=\sin ^{3} \theta \text {, where } 0 \leq \theta \leq 2 \pi
$$

This is called a hypocycloid. Then, we get

$$
\text { area }=\frac{1}{2} \int_{\partial D} x d y-y d x=\ldots=\frac{3}{8} \pi
$$

Theorem 1.1.2 (vectorial form of Green Theorem in the plane). Let D be a region of \mathbb{R}^{2} where Green Theorem applies. Denote $\partial D=C^{+}$. Consider that the plane \mathbb{R}^{2} is identified with the $(x O y)$ plane in \mathbb{R}^{3}. Let $F=(P(x, y), Q(x, y), 0)$ be a vector field over D. Then

$$
\int_{\partial D} F \cdot d s=\iint_{D}[(\operatorname{rot} F) \cdot \vec{k}] d x d y
$$

Example 1.1.2 Let $F(x, y)=\left(x y^{2}, y+x\right)$ be a vector field of \mathbb{R}^{2}. Let D be the region of the first upper quadrant, bounded by $y=x^{2}$ and $y=x$. We want to compute $\int_{\partial D} F . d s$. A first way simply consists in applying the definition of a line integral. Let's apply the result just mentioned above.
It is enough to compute rotF. \vec{k}. We find that it is equal to $1-2 x y$. Then

$$
\int_{\partial D} F \cdot d s=\iint_{D}(\operatorname{rot} F) \cdot \vec{k} d x d y=\int_{0}^{1} \int_{x^{2}}^{x}(1-2 x y) d y d x=\frac{1}{12}
$$

Theorem 1.1.3 Divergence Theorem in the plane.

Let $D \subset \mathbb{R}^{2}$ be a region where Green Theorem applies, with an oriented boundary ∂D. Let \vec{n} be the unit normal vector field to ∂D directed towards the exterior of D. If $c:[a, b] \rightarrow \mathbb{R}^{2}$, $c(t)=(x(t), y(t))$ is a parametrization of ∂D preserving its orientation, then

$$
\vec{n}=\frac{\left(y^{\prime}(t),-x^{\prime}(t)\right)}{\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}}
$$

Let then $F=(P(x, y), Q(x, y))$ be a vector field over D. Then we have

$$
\int_{\partial D}(F . n) d s=\iint_{D}(d i v F) d x d y
$$

Careful: the first integral is a line integral.

Example 1.1.3 If $F=\left(y^{3}, x^{5}\right)$, we find that, if D is the unit square,

$$
\int_{\partial D} F \cdot n d s=\iint \operatorname{div} F d x d y=0
$$

1.2 Stokes Theorem

Here we are going to make the link between the line integral of a vector field along a simple and closed curve C in \mathbb{R}^{3} and a surface integral over a surface S "lying" on this curve.

To keep simple, we start first by the case where the surface \mathcal{S} is associated to the graph of a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Let us recall then that an associated parametrization is given by

$$
x=u, y=v \text { and } z=g(u, v)
$$

where $(u, v) \in D \subset \mathbb{R}^{2}$, and that this parametrization keeps the upwards orientation of \mathcal{S}. Then

$$
\iint_{\mathcal{S}^{+}} F . d S=\iint_{D}\left[F_{1}\left(-\partial_{u} g\right)+F_{2}\left(-\partial_{v} g\right)+F_{3}\right] d u d v
$$

where $F=\left(F_{1}, F_{2}, F_{3}\right)$ is a given vector field.
We assume that the set D is a region of \mathbb{R}^{2} with a boundary ∂D being a closed and simple curve, such that we may apply 2 d Green Theorem. We have also fixed an orientation of ∂D. Let $c:[a, b] \rightarrow \mathbb{R}^{2}, c(t)=(x(t), y(t))$ a positive parametrization of ∂D, thus preserving the orientation of ∂D. Then we may set

Definition 1.2.1 With these notations, we define the oriented boundary curve $\partial \mathcal{S}$ as being the oriented simple and closed curve, obtained as the image through the map

$$
p: t \rightarrow p(t)=(x(t), y(t), g(x(t), y(t)))
$$

together with the orientation induced by p.
$\partial \mathcal{S}$ has been oriented positively such as to have always \mathcal{S} at the left. This orientation is said to be induced by the normal field \vec{n} directed upwards (corkscrew rule).

Theorem 1.2.1 Stokes Theorem for graphs.
With the above notations and definition, let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field over \mathcal{S}. Then

$$
\iint_{\mathcal{S}^{+}}(\operatorname{rot} F) \cdot d S=\int_{\partial \mathcal{S}^{+}} F \cdot d s
$$

A small remark: if G is a vector field, then

$$
\begin{gathered}
\iint_{\mathcal{S}^{+}} G \cdot d S=\iint_{\Phi} G \cdot d S=\iint_{D} G \cdot\left(T_{u} \wedge T_{v}\right) d u d v= \\
=\iint_{D}\left(\frac{T_{u} \wedge T_{v}}{\left\|T_{u} \wedge T_{v}\right\|}\right)\left\|T_{u} \wedge T_{v}\right\| d u d v=\iint_{D}(G \cdot n)\left\|T_{u} \wedge T_{v}\right\| d u d v=\iint_{\mathcal{S}}(G \cdot n) d S
\end{gathered}
$$

$$
\operatorname{rot} F=\left(G_{1}, G_{2}, G_{3}\right)=\left(\partial_{y} F_{3}-\partial_{z} F_{2}, \partial_{z} F_{1}-\partial_{x} F_{3}, \partial_{x} F_{2}-\partial_{y} F_{1}\right)
$$

We deduce that

$$
\begin{gathered}
\iint_{\mathcal{S}^{+}}(\operatorname{rot} F) \cdot d S=\iint_{D}\left(\partial_{z} F_{1}-\partial_{x} F_{3}\right)\left(-\partial_{u} g\right)+\left(\partial_{z} F_{1}-\partial_{x} F_{3}\right)\left(-\partial_{v} g\right)+ \\
\left.+\left(\partial_{x} F_{2}-\partial_{y} F_{1}\right)\right] d u d v
\end{gathered}
$$

On the other hand

$$
\int_{\partial \mathcal{S}} F . d s=\int_{p} F . d s=\int_{p} F_{1} d x+F_{2} d y+F_{3} d z
$$

where p denotes the path $p:[a, b] \rightarrow \mathbb{R}^{3}$

$$
p(t)=(x(t), y(t), g(x(t), y(t))
$$

Thus, applying the definition, we find

$$
\int_{\partial \mathcal{S}} F . d s=\int_{\partial D}\left(F_{1}+F_{3} \partial_{u} g\right) d x+\left(F_{2}+F_{3} \partial_{v} g\right) d y
$$

We apply 2d Green Theorem to get that this is equal to

$$
\iint_{D}\left[\partial_{x}\left[\left(F_{1}+F_{3} \partial_{u} g\right)\right]-\partial_{y}\left[\left(F_{2}+F_{3} \partial_{v} g\right)\right] d u d v\right.
$$

and computing, we find the result.

Example 1.2.1 Let

$$
F=\left(y e^{z}, x e^{z}, x y e^{z}\right)
$$

We compute: rot $F=0$ and then we deduce that $\int_{C} F . d s=0$, with the same notations as above.

Example 1.2.2 Compute

$$
\int_{C}-y^{3} d x+x^{3} d y-z^{3} d z
$$

where C is the curve positively oriented, obtained as intersection of the cylinder $x^{2}+y^{2}=1$ with the plane $x+y+z=1$.

Now, we want to generalize all these results to parametrized surfaces which are not necessarily obtained as graphs of functions. The key issue is to see what will be the equivalent of $\partial \mathcal{S}$ (and what is the "orientation").
Let us fix the notations. Let $\Phi: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a parametrization \mathcal{S}. Let $c:[a, b] \rightarrow \mathbb{R}^{2}$, $c(t)=(u(t), v(t))$ be a positive parametrization of ∂D.
One simple way to define ∂S would be to consider this set as a curve parametrized by

$$
t \rightarrow p(t)=\Phi(u(t), v(t)))
$$

This way does not work. To explain this point, let us consider an explicit example.
Let us consider a parametrization of the unit sphere \mathcal{S}, given as usual

$$
x=\cos u \sin v, y=\sin u \sin v, z=\cos v
$$

with $(u, v) \in D=[0,2 \pi] \times[0, \pi]$.
Let c be a parametrization of the boundary of the rectangle D. if we were to apply this definition of $\partial \mathcal{S}$, then we would obtain that $\partial \mathcal{S}$ would be the great circle in the plane xoz: this is not meaningful as geometrically, \mathcal{S} has no boundary.
In fact this issue is connected to the fact that Φ is not injective over D. We are going to set up a restrictive definition, but which can be applied to the case of surfaces obtained as graphs of functions.

Definition 1.2.2 With the above notations, assume moreover that Φ is injective over D. Then we call $\Phi(\partial D)$ the geometric boundary of $\mathcal{S}=\Phi(D)$. If $c(t)=(u(t), v(t))$ is a positive parametrization of ∂D, we define ∂S as the simple closed and oriented curve, obtained as image by

$$
p: t \rightarrow \Phi(u(t), v(t))
$$

We say that the orientation of ∂S is induced by p.

Then we have

Theorem 1.2.2 Stokes Theorem: parametrized surface.

Let \mathcal{S} be an oriented parametrized surface, defined by a positive and injective parametrization Φ over D. Let $\partial \mathcal{S}$ be the oriented boundary of \mathcal{S}. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field. Then

$$
\iint_{\mathcal{S}^{+}}(r o t F) \cdot d S=\int_{\partial \mathcal{S}} F \cdot d s
$$

Example 1.2.3 Consider \mathcal{S} as the unit upper sphere. Here ∂D is the curve with equation

$$
x^{2}+y^{2}=1
$$

Set $F=\left(y,-x, e^{x z}\right)$. We want to compute $\iint_{\mathcal{S}^{+}}(\operatorname{rot} F) . d S$. For this purpose, we shall use Stokes Theorem. We parametrize $\partial \mathcal{S}$ by

$$
x(t)=\cos t, y(t)=\sin t, z=0,0 \leq t \leq 2 \pi
$$

Then

$$
\begin{gathered}
\int_{\partial \mathcal{S}} F \cdot d s=\int_{0}^{2 \pi}\left(y \frac{d x}{d t}-x \frac{d y}{d t} d t=\right. \\
=\int_{0}^{2 \pi}\left(-\sin ^{2} t-\cos ^{2} t\right) d t=\ldots=-2 \pi .
\end{gathered}
$$

1.3 3d Green Theorem

Let us first define what we shall term as elementary region of \mathbb{R}^{3}. Such a region of \mathbb{R}^{3} is defined as a region such that one of the variables (say for example z) is between two functions of the other variables (here, $f(x, y) \leq z \leq g(x, y)$), and these two other variables belong to an elementary region of \mathbb{R}^{2}. A classical example is given by the unit closed ball.
Such regions are called symmetric if we can exchange the roles of these three variables: this is the case of the closed unit ball.

For such regions, the boundary can be divided into a finite number of graphs of functions. Such (boundary) surfaces are said to be closed surfaces.
Once we have divided this surface into such small pieces, we may call face such a piece.
For usual closed surfaces, we may define two orientations: one said to be interior and the other exterior.

The choice of an orientation defines \mathcal{S} as a closed oriented surface.
Then we have
Theorem 1.3.1 3d Green Theorem. Let Ω be an elementary symmetric region of \mathbb{R}^{3}, and $\partial \Omega$ its boundary surface, closed and oriented towards the exterior. Let F be a vector field over Ω. Then

$$
\iiint_{\Omega}(d i v F) d x d y d z=\iint_{\partial \Omega} F \cdot d S
$$

Example 1.3.1 Let $F=\left(2 x, y^{2}, z^{2}\right)$. Let \mathcal{S} be the unit sphere, oriented towards the exterior. We want to compute the flux of F accross \mathcal{S}, that is $\iint_{\mathcal{S}} F . d S$. Note that \mathcal{S} is a closed
oriented surface, corresponding to $\partial \Omega$, if Ω denotes the unit closed ball, which is an elementary symmetric region of \mathbb{R}^{3}. Then, applying 3d Green Theorem, we have

$$
\iint_{\mathcal{S}} F \cdot d S=\iiint_{\Omega}(\operatorname{div} F) d x d y d z=\ldots=8 \frac{\pi}{3}
$$

1.4 Exercices of this Chapter

2d Green

1. Compute $\int_{C} y d x-x d y$ where C is the boundary of the square $[-1,1] \times[-1,1]$, oriented positively.
2. Compte the area of a disk of radius R using 2 d Green Theorem.
3. Check Green theorem for the disk D centered at $(0,0)$ and with radius R :
(a) $P(x, y)=x y^{2}, Q(x, y)=-y x^{2}$,
(b) $P(x, y)=x+y, Q(x, y)=y$,
(c) $P(x, y)=x y=Q(x, y)$,
(d) $P(x, y)=2 y, Q(x, y)=x$.
4. Under the conditions of Green Theorem, show that
(a)

$$
\int_{\partial D} P Q d x+P Q d y=\iint_{D}\left[Q\left(\partial_{x} P-\partial_{y} P\right)+P\left(\partial_{x} Q-\partial_{y} Q\right)\right] d x d y
$$

(b)

$$
\int_{\partial D}\left(Q \partial_{x} P-P \partial_{x} Q\right) d x+\left(P \partial_{y} Q-Q \partial_{y} P\right) d y=2 \iint_{D}\left(P \partial_{x y}^{2} Q-Q \partial_{x y}^{2} P\right) d x d y
$$

5. Compute $\int_{C}\left(2 x^{3}-y^{3}\right) d x+\left(x^{3}+y^{3}\right) d y$, where C is the unit circle.
6. (a) Check Divergence Theorem for $F=(x, y)$ and the unit disk D.
(b) Compute the integral of the normal component of $\left(2 x y,-y^{2}\right)$ along the ellipsis defined by $x^{2} / a^{2}+y^{2} / b^{2}=1$.

Stokes

7. Check Stoke Theorem for $z=\sqrt{1-x^{2}-y^{2}}, z \geq 0$ and the field $F=(x, y, z)$.
8. Let S the surface defined by $S=S_{1} \cup S_{2}$, where S_{1} is the surface $x^{2}+y^{2}=1,0 \leq z \leq 1$ and S_{2} is the surface $x^{2}+y^{2}+(z-1)^{2}=1, z \geq 1$. Let $F=\left(z x+z^{2} y+x, z^{3} y x+y, z^{4} x^{2}\right)$. Compute $\iint_{S}($ rot $F) \cdot d S$.
9. Compute $\iint_{S}($ rot $F) . d S$, where S is the surface defined by $x^{2}+y^{2}+z^{2}=1, x+y+z \geq 1$ and $F=(x, y, z)$.
10. Compute $\iint_{S}(\operatorname{rot} F) \cdot d S$, where S is $x^{2}+y^{2}+z^{2}=1, x \geq 0$, and $F=\left(x^{3},-y^{3}, 0\right)$.
11. Compute $\iint_{S}(\operatorname{rot} F) \cdot d S$, where S is $x^{2}+y^{2}+2 z^{2}=10$, et $F=\left(\sin (x y), e^{x},-y z\right)$.

3d Green Theorem

12. Let S be a closed surface. Let F be a vector field. Show that $\iint_{S}(\operatorname{rot} F) \cdot d S=0$.
13. Let $F=\left(x^{3}, y^{3}, z^{3}\right)$. Compute the flux of F accross the unit sphere.
14. Let Ω be the unit cube (in the usual part of \mathbb{R}^{3}). Compute $\iint_{\partial \Omega} F . d S$ (two ways):
(a) $F=(x, y, z)$
(b) $F=(1,1,1)$
(c) $F=\left(x^{2}, x^{2}, z^{2}\right)$
15. Let $F=(x, y, x z)$. Compute $\iint_{\partial \Omega} F . d S$ when Ω is given by
(a) $x^{2}+y^{2} \leq z \leq 1$
(b) $x^{2}+y^{2} \leq z \leq 1$ and $x \geq 0$
(c) $x^{2}+y^{2} \leq z \leq 1$ ad $x \leq 0$
16. Same as the previous exercice with $F=(x-y, y-z, z-x)$.
