
Chapter 1

Vectorial Analysis: Big Theorems

1.1 Green Theorem in the plane

Consider a ”simple region” in the plane, and more precisely a region of type 1, 2 or 3.

A region of type 1: this is a region such that x is between two constants while y is between

two functions of x.

A region of type 2: roles of x and y are exchanged.

A region of type 3: symmetric region.

In particular its boundary is a simple close curve: we may find an associated map c :

[a, b] → IR2 injective over ]a, b[, with c(a) = c(b). Such a curve can be equipped with two

(running) directions: the anticlockwise direction, and then we denote by C+ this curve;

and the clockwise direction, and then we denote by C− this curve. Directions can be also

associated with parts of such curves.

Let us begin with a simple lemma

Lemma 1.1.1 Let D be a region of type 1, that is such that

D = {a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}

C its boundary and P : D → IR a C1 function. Then∫
C+

Pdx = −
∫ ∫

∂ypdxdy

The lhs is a line integral.

Proof: We shall denote by C1 and by C2 the ”horizontal curves” and B1 and B2 the ”vertical”

curves.
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As

D = {a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}

we have ∫ ∫
D
∂yP (x, y)dxdy =

∫ b

a
[

∫ φ2(x)

φ1(x)
∂yP (x, y)dy]dx =

=

∫ b

a
[P (x, φ2(x))− P (x, φ1(x))]dx

Now, we parametrize C+
1 by

x ∈ [a, b]→ (x, φ1(x))

and C+
2 by

x ∈ [a, b]→ (x, φ2(x))

Then, by definition, we have

∫
C+

1

P (x, y)dx =

∫ b

a
P (x, φ1(x))dx

∫
C+

2

P (x, y)dx =

∫ b

a
P (x, φ2(x))dx

In particular

−
∫ b

a
P (x, φ2(x))d =

∫
C−

2

P (x, y)dx

We deduce ∫ ∫
D
∂yP (x, y)dxdy = −

∫
C+

1

P (x, y)dx−
∫
C−

2

P (x, y)dx

As x is constant on B+
2 and B−1 , we have∫

B+
2

Pdx = 0 =

∫
B−

1

Pdx

In conclusion, we obtain∫
C+

Pdx =

∫
C+

1

Pdx+

∫
B+

2

Pdx+

∫
C−

2

Pdx+

∫
B−

1

Pdx

=

∫
C+

1

Pdx+

∫
C−

2

Pdx

and thus the result.

//

Similarly, we have
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Lemma 1.1.2 Let D be a type 2 region, C its boundary and Q : IR2 → IR a C1 function.

Then ∫
C+

Qdy =

∫ ∫
D
∂xQ(x, y)dxdy

From these two results, we deduce

Theorem 1.1.1 Green Theorem in IR2. Let D be a type 3 region, C its boundary, and

P,Q : IR2 → IR two C1 functions. Then∫
C+

Pdx+Qdy =

∫ ∫
D

[∂xQ(x, y)− ∂yP (x, y)]dxdy

In order to apply this Theorem, a good way to remember that we are working with the

positive orientation (anticlockwise ...) is to keep in mind that we travel along C so that we

always keep the region D on our left.

To fix further notations, we shall always denote by ∂D what we have denoted by C+ above.

Thus Green Theorem can be formulated as∫
∂D

Pdx+Qdy =

∫ ∫
D

[∂xQ(x, y)− ∂yP (x, y)]dxdy

There are many applications of this result. For example

Proposition 1.1.1 Area of a region: if C is a simple closed curve surrounding a region of

IR2 where we may apply Green Theorem, then the area of this region D is given by

area(D) =
1

2

∫
∂D

(xdy − ydx)

proof: Set P (x, y) = −y and Q(x, y) = x. Then by Green Theorem, it follows that

1

2

∫
∂D

(xdy − ydx) =
1

2

∫
∂D
−ydx+ xdy

=
1

2

∫ ∫
D

[∂x(x)− ∂y(−y)]dxdy

=
1

2

∫ ∫
D

(1 + 1)dxdy =

∫ ∫
D

1dxdy = area(D)

//

Example 1.1.1 let us compute the area of te region enclosed by the curve C with equation

x
2
3 + y

2
3 = 1.

One may check that we get a parametrization of C with the positive orientation, by setting

x = cos3 θ and y = sin3 θ, where 0 ≤ θ ≤ 2π
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This is called a hypocycloid. Then, we get

area =
1

2

∫
∂D

xdy − ydx = . . . =
3

8
π

Theorem 1.1.2 (vectorial form of Green Theorem in the plane). Let D be a region of IR2

where Green Theorem applies. Denote ∂D = C+. Consider that the plane IR2 is identified

with the (xOy) plane in IR3. Let F = (P (x, y), Q(x, y), 0) be a vector field over D. Then∫
∂D

F.ds =

∫ ∫
D

[( rotF ).~k]dxdy

Example 1.1.2 Let F (x, y) = (xy2, y + x) be a vector field of IR2. Let D be the region of

the first upper quadrant, bounded by y = x2 and y = x. We want to compute
∫
∂D F.ds. A

first way simply consists in applying the definition of a line integral. Let’s apply the result

just mentioned above.

It is enough to compute rotF.~k. We find that it is equal to 1− 2xy. Then∫
∂D

F.ds =

∫ ∫
D

( rot F ).~kdxdy =

∫ 1

0

∫ x

x2
(1− 2xy)dydx =

1

12

Theorem 1.1.3 Divergence Theorem in the plane.

Let D ⊂ IR2 be a region where Green Theorem applies, with an oriented boundary ∂D. Let

~n be the unit normal vector field to ∂D directed towards the exterior of D. If c : [a, b]→ IR2,

c(t) = (x(t), y(t)) is a parametrization of ∂D preserving its orientation, then

~n =
(y′(t),−x′(t))√

(x′(t))2 + (y′(t))2

Let then F = (P (x, y), Q(x, y)) be a vector field over D. Then we have∫
∂D

(F.n)ds =

∫ ∫
D

(divF )dxdy

Careful: the first integral is a line integral.

Example 1.1.3 If F = (y3, x5), we find that, if D is the unit square,∫
∂D

F.nds =

∫ ∫
div Fdxdy = 0
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1.2 Stokes Theorem

Here we are going to make the link between the line integral of a vector field along a simple

and closed curve C in IR3 and a surface integral over a surface S ”lying” on this curve.

To keep simple, we start first by the case where the surface S is associated to the graph

of a function g : IR2 → IR. Let us recall then that an associated parametrization is given by

x = u, y = v and z = g(u, v)

where (u, v) ∈ D ⊂ IR2, and that this parametrization keeps the upwards orientation of S.

Then

∫ ∫
S+
F.dS =

∫ ∫
D

[F1(−∂ug) + F2(−∂vg) + F3]dudv

where F = (F1, F2, F3) is a given vector field.

We assume that the set D is a region of IR2 with a boundary ∂D being a closed and simple

curve, such that we may apply 2d Green Theorem. We have also fixed an orientation of ∂D.

Let c : [a, b] → IR2, c(t) = (x(t), y(t)) a positive parametrization of ∂D, thus preserving the

orientation of ∂D. Then we may set

Definition 1.2.1 With these notations, we define the oriented boundary curve ∂S as being

the oriented simple and closed curve, obtained as the image through the map

p : t→ p(t) = (x(t), y(t), g(x(t), y(t)))

together with the orientation induced by p.

∂S has been oriented positively such as to have always S at the left. This orientation is said

to be induced by the normal field ~n directed upwards (corkscrew rule).

Theorem 1.2.1 Stokes Theorem for graphs.

With the above notations and definition, let F : IR3 → IR3 be a vector field over S. Then∫ ∫
S+

( rot F ).dS =

∫
∂S+

F.ds

A small remark: if G is a vector field, then∫ ∫
S+
G.dS =

∫ ∫
Φ
G.dS =

∫ ∫
D
G.(Tu ∧ Tv)dudv =

=

∫ ∫
D

(
Tu ∧ Tv
‖ Tu ∧ Tv ‖

) ‖ Tu ∧ Tv ‖ dudv =

∫ ∫
D

(G.n) ‖ Tu ∧ Tv ‖ dudv =

∫ ∫
S

(G.n)dS
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proof: Set F = (F1, F2, F3). Then

rot F = (G1, G2, G3) = (∂yF3 − ∂zF2, ∂zF1 − ∂xF3, ∂xF2 − ∂yF1)

We deduce that∫ ∫
S+

(rot F ).dS =

∫ ∫
D

(∂zF1 − ∂xF3)(−∂ug) + (∂zF1 − ∂xF3)(−∂vg)+

+(∂xF2 − ∂yF1)]dudv

On the other hand ∫
∂S
F.ds =

∫
p
F.ds =

∫
p
F1dx+ F2dy + F3dz

where p denotes the path p : [a, b]→ IR3

p(t) = (x(t), y(t), g(x(t), y(t))

Thus, applying the definition, we find∫
∂S
F.ds =

∫
∂D

(F1 + F3∂ug)dx+ (F2 + F3∂vg)dy

We apply 2d Green Theorem to get that this is equal to∫ ∫
D

[∂x[(F1 + F3∂ug)]− ∂y[(F2 + F3∂vg)]dudv

and computing, we find the result.

//

Example 1.2.1 Let

F = (yez, xez, xyez)

We compute: rot F = 0 and then we deduce that
∫
C F.ds = 0, with the same notations as

above.

Example 1.2.2 Compute ∫
C
−y3dx+ x3dy − z3dz

where C is the curve positively oriented, obtained as intersection of the cylinder x2 + y2 = 1

with the plane x+ y + z = 1.
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Now, we want to generalize all these results to parametrized surfaces which are not nec-

essarily obtained as graphs of functions. The key issue is to see what will be the equivalent

of ∂S (and what is the ”orientation”).

Let us fix the notations. Let Φ : D ⊂ IR2 → IR3 be a parametrization S. Let c : [a, b]→ IR2,

c(t) = (u(t), v(t)) be a positive parametrization of ∂D.

One simple way to define ∂S would be to consider this set as a curve parametrized by

t→ p(t) = Φ(u(t), v(t)))

This way does not work. To explain this point, let us consider an explicit example.

Let us consider a parametrization of the unit sphere S, given as usual

x = cosu sin v, y = sinu sin v, z = cos v

with (u, v) ∈ D = [0, 2π]× [0, π].

Let c be a parametrization of the boundary of the rectangle D. if we were to apply this

definition of ∂S, then we would obtain that ∂S would be the great circle in the plane xoz:

this is not meaningful as geometrically, S has no boundary.

In fact this issue is connected to the fact that Φ is not injective over D. We are going to

set up a restrictive definition, but which can be applied to the case of surfaces obtained as

graphs of functions.

Definition 1.2.2 With the above notations, assume moreover that Φ is injective over D.

Then we call Φ(∂D) the geometric boundary of S = Φ(D). If c(t) = (u(t), v(t)) is a positive

parametrization of ∂D, we define ∂S as the simple closed and oriented curve, obtained as

image by

p : t→ Φ(u(t), v(t))

We say that the orientation of ∂S is induced by p.

Then we have

Theorem 1.2.2 Stokes Theorem: parametrized surface.

Let S be an oriented parametrized surface, defined by a positive and injective parametrization

Φ over D. Let ∂S be the oriented boundary of S. Let F : IR3 → IR3 be a vector field. Then∫ ∫
S+

(rot F ).dS =

∫
∂S
F.ds
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Example 1.2.3 Consider S as the unit upper sphere. Here ∂D is the curve with equation

x2 + y2 = 1

Set F = (y,−x, exz). We want to compute
∫ ∫
S+(rot F ).dS. For this purpose, we shall use

Stokes Theorem. We parametrize ∂S by

x(t) = cos t, y(t) = sin t, z = 0, 0 ≤ t ≤ 2π

Then ∫
∂S
F.ds =

∫ 2π

0
(y
dx

dt
− xdy

dt
dt =

=

∫ 2π

0
(− sin2 t− cos2 t)dt = . . . = −2π.

1.3 3d Green Theorem

Let us first define what we shall term as elementary region of IR3. Such a region of IR3 is

defined as a region such that one of the variables (say for example z) is between two functions

of the other variables (here, f(x, y) ≤ z ≤ g(x, y)), and these two other variables belong to

an elementary region of IR2. A classical example is given by the unit closed ball.

Such regions are called symmetric if we can exchange the roles of these three variables: this

is the case of the closed unit ball.

For such regions, the boundary can be divided into a finite number of graphs of functions.

Such (boundary) surfaces are said to be closed surfaces.

Once we have divided this surface into such small pieces, we may call face such a piece.

For usual closed surfaces, we may define two orientations: one said to be interior and the

other exterior.

The choice of an orientation defines S as a closed oriented surface.

Then we have

Theorem 1.3.1 3d Green Theorem. Let Ω be an elementary symmetric region of IR3, and

∂Ω its boundary surface, closed and oriented towards the exterior. Let F be a vector field

over Ω. Then ∫ ∫ ∫
Ω

(div F )dxdydz =

∫ ∫
∂Ω
F.dS

Example 1.3.1 Let F = (2x, y2, z2). Let S be the unit sphere, oriented towards the exterior.

We want to compute the flux of F accross S, that is
∫ ∫
S F.dS. Note that S is a closed



1.4. EXERCICES OF THIS CHAPTER 9

oriented surface, corresponding to ∂Ω, if Ω denotes the unit closed ball, which is an elementary

symmetric region of IR3. Then, applying 3d Green Theorem, we have∫ ∫
S
F.dS =

∫ ∫ ∫
Ω

(div F )dxdydz = . . . = 8
π

3

1.4 Exercices of this Chapter

2d Green

1. Compute
∫
C y dx−x dy where C is the boundary of the square [−1, 1]×[−1, 1], oriented

positively.

2. Compte the area of a disk of radius R using 2d Green Theorem.

3. Check Green theorem for the disk D centered at (0, 0) and with radius R:

(a) P (x, y) = xy2, Q(x, y) = −yx2,

(b) P (x, y) = x+ y, Q(x, y) = y,

(c) P (x, y) = xy = Q(x, y),

(d) P (x, y) = 2y, Q(x, y) = x.

4. Under the conditions of Green Theorem, show that

(a) ∫
∂D

PQ dx+ PQ dy =

∫ ∫
D

[Q(∂xP − ∂yP ) + P (∂xQ− ∂yQ)] dxdy.

(b) ∫
∂D

(Q∂xP − P∂xQ) dx+ (P∂yQ−Q∂yP ) dy = 2

∫ ∫
D

(P∂2
xyQ−Q∂2

xyP ) dxdy

5. Compute
∫
C(2x3 − y3)dx+ (x3 + y3)dy, where C is the unit circle.

6. (a) Check Divergence Theorem for F = (x, y) and the unit disk D.

(b) Compute the integral of the normal component of (2xy,−y2) along the ellipsis

defined by x2/a2 + y2/b2 = 1.

Stokes

7. Check Stoke Theorem for z =
√

1− x2 − y2, z ≥ 0 and the field F = (x, y, z).
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8. Let S the surface defined by S = S1∪S2, where S1 is the surface x2 +y2 = 1, 0 ≤ z ≤ 1

and S2 is the surface x2 +y2 +(z−1)2 = 1, z ≥ 1. Let F = (zx+z2y+x, z3yx+y, z4x2).

Compute
∫ ∫

S(rot F ).dS.

9. Compute
∫ ∫

S(rot F ).dS, where S is the surface defined by x2+y2+z2 = 1, x+y+z ≥ 1

and F = (x, y, z).

10. Compute
∫ ∫

S(rot F ).dS, where S is x2 + y2 + z2 = 1, x ≥ 0, and F = (x3,−y3, 0).

11. Compute
∫ ∫

S(rot F ).dS, where S is x2 + y2 + 2z2 = 10, et F = (sin(xy), ex,−yz).

3d Green Theorem

12. Let S be a closed surface. Let F be a vector field. Show that
∫ ∫

S(rot F ).dS = 0.

13. Let F = (x3, y3, z3). Compute the flux of F accross the unit sphere.

14. Let Ω be the unit cube (in the usual part of IR3). Compute
∫ ∫

∂Ω F.dS (two ways):

(a) F = (x, y, z)

(b) F = (1, 1, 1)

(c) F = (x2, x2, z2)

15. Let F = (x, y, xz). Compute
∫ ∫

∂Ω F.dS when Ω is given by

(a) x2 + y2 ≤ z ≤ 1

(b) x2 + y2 ≤ z ≤ 1 and x ≥ 0

(c) x2 + y2 ≤ z ≤ 1 ad x ≤ 0

16. Same as the previous exercice with F = (x− y, y − z, z − x).


