Chapter 1

Vectorial Analysis: Big Theorems

1.1 Green Theorem in the plane

Consider a ”simple region” in the plane, and more precisely a region of type 1, 2 or 3.

A region of type 1: this is a region such that x is between two constants while y is between
two functions of x.

A region of type 2: roles of x and y are exchanged.

A region of type 3: symmetric region.

In particular its boundary is a simple close curve: we may find an associated map c :
[a,b] — IR? injective over ]a,b[, with c¢(a) = ¢(b). Such a curve can be equipped with two
(running) directions: the anticlockwise direction, and then we denote by C* this curve;
and the clockwise direction, and then we denote by C~ this curve. Directions can be also
associated with parts of such curves.

Let us begin with a simple lemma

Lemma 1.1.1 Let D be a region of type 1, that is such that
D={a<z<bei(r) <y<do(r)}

C its boundary and P : D — IR a C' function. Then
Pdzx = —//Gypd:cdy
Cc+
The lhs is a line integral.

Proof: We shall denote by Cy and by Cs the ”horizontal curves” and By and Bs the ”vertical”

curves.
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D={a<z<boi(x) <y< dox)}

b pd2(x)
// OyP(x,y)dxdy :/ [/ OyP(z,y)dyldz =
D a Jé1(x)

b
:/ [P(x, ds(2)) — Pla, ¢1(x))]da

we have

Now, we parametrize Cfr by
x € la,b] = (z, ¢1(x))

and Cy by

x € [a,b] = (2, ¢2(x))

Then, by definition, we have
b
Plag)do = [ Pla,or(a)ds

Cl
b
/ P(x,y)da::/ P(x, ¢po(x))dx
Cg’ a
In particular

- [ P o= [ ppas

Cy
We deduce
// OyP(x,y)dxdy = —/ P(x,y)dx — P(z,y)dz
D cf Cy

1 2

As z is constant on B;r and B, we have

/ Pdr=0= Pdx
By By

In conclusion, we obtain

/Pda::/ de—i—/ Pda:—i—/
o+ ot Bf C,

1

Pda:—i—/ Pdx
B

2 1

= / Pdx + Pdx
cf Cy

and thus the result.

//

Similarly, we have
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Lemma 1.1.2 Let D be a type 2 region, C its boundary and Q : IR?> — IR a C' function.

Then
‘LQ@Z/A%QMMMy

From these two results, we deduce

Theorem 1.1.1 Green Theorem in IR*>. Let D be a type 3 region, C its boundary, and
P,Q: IR?> - IR two C' functions. Then

| par+Qay= [ [ 0.0G.5) ~0,Pa.ldedy

In order to apply this Theorem, a good way to remember that we are working with the
positive orientation (anticlockwise ...) is to keep in mind that we travel along C' so that we
always keep the region D on our left.

To fix further notations, we shall always denote by D what we have denoted by C™ above.

Thus Green Theorem can be formulated as
| pas+oiy= [ [ 0.06.5) - 0,P(.y))dzdy
oD D
There are many applications of this result. For example

Proposition 1.1.1 Area of a region: if C is a simple closed curve surrounding a region of

IR? where we may apply Green Theorem, then the area of this region D is given by

area(D) = ;/ (xdy — ydx)
oD

proof: Set P(z,y) = —y and Q(z,y) = z. Then by Green Theorem, it follows that

1 1
/ (xdy — ydx) = / —ydx + xdy
2 Jop 2 Jop

_;//D[am(m)—ay(—y)]divdy

:;//D(l—i—l)dxdy://Dldxdy:m“ea(D)
//

Example 1.1.1 let us compute the area of te region enclosed by the curve C with equation
x% + y§ =1.

One may check that we get a parametrization of C with the positive orientation, by setting

x = cos’ 0 and y = sin® 0, where 0 <0 <27



4 CHAPTER 1. VECTORIAL ANALYSIS: BIG THEOREMS

This is called o hypocycloid. Then, we get

1
area :2/8Dxdy—ydac:...:z7r

Theorem 1.1.2 (vectorial form of Green Theorem in the plane). Let D be a region of IR>
where Green Theorem applies. Denote 0D = C*. Consider that the plane IR? is identified
with the (xOy) plane in IR®. Let F = (P(z,y), Q(x,y),0) be a vector field over D. Then

/(9 Pas— / /D (( rotF).R\dedy

Example 1.1.2 Let F(z,y) = (zy?,y + ) be a vector field of IR%. Let D be the region of
the first upper quadrant, bounded by y = z® and y = . We want to compute faD F.ds. A
first way simply consists in applying the definition of a line integral. Let’s apply the result

just mentioned above.

It is enough to compute rotF.k. We find that it is equal to 1 — 2xy. Then

. 1 rzx 1
/ F.ds = // (rot F).kdxdy = / / (1 = 2zy)dyder = —
oD D 0 Ja? 12

Theorem 1.1.3 Divergence Theorem in the plane.

Let D C IR? be a region where Green Theorem applies, with an oriented boundary OD. Let
il be the unit normal vector field to D directed towards the exterior of D. If ¢ : [a,b] — IR?,

c(t) = (x(t),y(t)) is a parametrization of 0D preserving its orientation, then

(y'(t), =2’ (t))
V(1)) + (1)

Let then F = (P(x,y),Q(z,y)) be a vector field over D. Then we have

/8 (Fa)ds = / /D (divF)dxdy

Careful: the first integral is a line integral.

n=

Example 1.1.3 If F = (y3,2%), we find that, if D is the unit square,

F.onds = //div Fdxdy =0
oD
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1.2 Stokes Theorem

Here we are going to make the link between the line integral of a vector field along a simple
and closed curve C' in IR? and a surface integral over a surface S ”lying” on this curve.
To keep simple, we start first by the case where the surface S is associated to the graph

of a function ¢ : IR? — IR. Let us recall then that an associated parametrization is given by
x=u,y=vand z = g(u,v)

where (u,v) € D C IR?, and that this parametrization keeps the upwards orientation of S.

Then

[ [ pas= [ [ (A-o.0)+ Pa(-0.0) + Pikdudo

where F' = (F, Fy, F3) is a given vector field.

We assume that the set D is a region of IR? with a boundary 0D being a closed and simple
curve, such that we may apply 2d Green Theorem. We have also fixed an orientation of 0D.
Let ¢ : [a,b] — IR?, ¢(t) = (x(t),y(t)) a positive parametrization of 9D, thus preserving the

orientation of D. Then we may set

Definition 1.2.1 With these notations, we define the oriented boundary curve S as being

the oriented simple and closed curve, obtained as the image through the map

pit—p(t) = (x(t),y(t), g(x(t),y(t)))
together with the orientation induced by p.

0S has been oriented positively such as to have always S at the left. This orientation is said

to be induced by the normal field 7 directed upwards (corkscrew rule).

Theorem 1.2.1 Stokes Theorem for graphs.
With the above notations and definition, let F : IR> — IR® be a vector field over S. Then

// (rot F).dS = F.ds
St as+

A small remark: if G is a vector field, then

//3+ G'dS://I)G'dsz//DG'(Tu/\Tv)dudv:

TuNT,
= — 2 VN T, AT, dudvz// G.n) || Ty AT, dudv:// G.n)dS
| [ Graap I Tt | (@) TAT | [(Gn)
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proof: Set F' = (Fy, Fy, F5). Then
rot F = (G1,Ga,Gs) = (0, Fs — 0. Fy, . F) — 0, F3, 0, F5 — 0,F})
We deduce that
[ [t mras= [ [ 0.5~ o.m-0u9) + 0.5 - 0u)(-0n9)+

+(0p Fo — 0y F1)|dudv

On the other hand

/ F.ds = /F.ds = /Flda: + Fody + Fsdz
oS p p

where p denotes the path p : [a,b] — R3

Thus, applying the definition, we find

/ Fds= / (Fy + F30,9)dx + (Fa + F30,9)dy
oS oD

We apply 2d Green Theorem to get that this is equal to

/ /D 0u[(Fy + F30u9)] — 0,[(Fs + Fsyg)|dudy

and computing, we find the result.

//

Example 1.2.1 Let

F = (ye*, xe®, xye”)

We compute: rot F = 0 and then we deduce that fc F.ds = 0, with the same notations as

above.

Example 1.2.2 Compute
/ —3dx + 23dy — 22d=
C

where C is the curve positively oriented, obtained as intersection of the cylinder > + y*> =1

with the plane x +y + z = 1.
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Now, we want to generalize all these results to parametrized surfaces which are not nec-
essarily obtained as graphs of functions. The key issue is to see what will be the equivalent
of S (and what is the ”orientation”).

Let us fix the notations. Let ® : D C IR* — IR? be a parametrization S. Let ¢ : [a,b] — IR?,
c(t) = (u(t),v(t)) be a positive parametrization of dD.

One simple way to define 9S would be to consider this set as a curve parametrized by

t = p(t) = (u(t), v(t)))

This way does not work. To explain this point, let us consider an explicit example.

Let us consider a parametrization of the unit sphere S, given as usual
x = cosusinw,y = sinusinv, z = cosv

with (u,v) € D = [0,27] x [0, 7].

Let ¢ be a parametrization of the boundary of the rectangle D. if we were to apply this
definition of dS, then we would obtain that S would be the great circle in the plane roz:
this is not meaningful as geometrically, S has no boundary.

In fact this issue is connected to the fact that ® is not injective over D. We are going to
set up a restrictive definition, but which can be applied to the case of surfaces obtained as

graphs of functions.

Definition 1.2.2 With the above notations, assume moreover that ® is injective over D.
Then we call ®(0D) the geometric boundary of S = ®(D). If c¢(t) = (u(t),v(t)) is a positive
parametrization of 0D, we define 0S5 as the simple closed and oriented curve, obtained as
mmage by

p:t— O(u(t),v(t))
We say that the orientation of S is induced by p.
Then we have

Theorem 1.2.2 Stokes Theorem: parametrized surface.

Let S be an oriented parametrized surface, defined by a positive and injective parametrization
® over D. Let OS be the oriented boundary of S. Let F : IR® — IR? be a vector field. Then

// (rot F).dS = F.ds
St oS
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Example 1.2.3 Consider S as the unit upper sphere. Here 0D is the curve with equation
24 =1

Set F' = (y,—x,e®®). We want to compute ff3+ (rot F).dS. For this purpose, we shall use
Stokes Theorem. We parametrize 0S by

x(t) = cost,y(t) =sint,z = 0,0 <t < 27

2m
/ F.ds = / (yd—x - x@dt =
o5 0 dt dt

2m
= / (—sin®t — cos® t)dt = ... = —2m.
0

Then

1.3 3d Green Theorem

Let us first define what we shall term as elementary region of IR®. Such a region of IR? is
defined as a region such that one of the variables (say for example z) is between two functions
of the other variables (here, f(z,y) < z < g(z,y)), and these two other variables belong to
an elementary region of IR%. A classical example is given by the unit closed ball.
Such regions are called symmetric if we can exchange the roles of these three variables: this
is the case of the closed unit ball.
For such regions, the boundary can be divided into a finite number of graphs of functions.
Such (boundary) surfaces are said to be closed surfaces.
Once we have divided this surface into such small pieces, we may call face such a piece.
For usual closed surfaces, we may define two orientations: one said to be interior and the
other exterior.

The choice of an orientation defines S as a closed oriented surface.

Then we have

Theorem 1.3.1 3d Green Theorem. Let Q be an elementary symmetric region of IR?, and

0 its boundary surface, closed and oriented towards the exterior. Let F be a vector field

over Q). Then
///(div F)dxdydz:/ F.ds
Q o0

Example 1.3.1 Let F = (2z,v%,2%). Let S be the unit sphere, oriented towards the exterior.
We want to compute the flux of F' accross S, that is ffs F.dS. Note that S is a closed
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oriented surface, corresponding to 02, if ) denotes the unit closed ball, which is an elementary

symmetric region of IR3. Then, applying 3d Green Theorem, we have

//SF'dS_///Q(diUF)dwdydz—...—gg

1.4 Exercices of this Chapter

2d Green

1. Compute [y dx—x dy where C is the boundary of the square [—1,1] x [—1, 1], oriented

positively.
2. Compte the area of a disk of radius R using 2d Green Theorem.

3. Check Green theorem for the disk D centered at (0,0) and with radius R:

2

(a) P(z,y) = zy® Q(z,y) = —ya?,
(b) P(z,y) =z +y, Qz,y) =v,
(c) Pz,y) = zy = Q(z,y),

(d) P(z,y) =2y, Qz,y) ==z

4. Under the conditions of Green Theorem, show that

(a)
/ PQ dz + PQ dy — / / Q(8.P — 8,P) + P(8,Q — 8,Q)] dady.
oD D

(b)
| (Qo.p - Po.Q) ds+ (P0,Q - Q0,P) dy=2 [ [ (PO2,Q - Q22 P) dady
oD D
5. Compute [,(22° —y*)dz + (2* + y*)dy, where C is the unit circle.

6. (a) Check Divergence Theorem for F' = (x,y) and the unit disk D.

(b) Compute the integral of the normal component of (2zy, —y?) along the ellipsis
defined by z%/a? + y? /b = 1.

Stokes

7. Check Stoke Theorem for z = /1 — 22 — y2, 2 > 0 and the field F = (z,y, 2).



10

10.

11.

12.

13.

14.

15.

16.
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. Let S the surface defined by S = S; U S5, where S is the surface 22 +32=1,0< 2 < 1

and Sy is the surface 22 +y?+(2—1)2 =1, 2 > 1. Let F = (za+2%y+z, 23yz+y, 242?).
Compute [ [q(rot F).dS.

. Compute [ fs(rot F).dS, where S is the surface defined by 22 +4?+22 = 1, z+y+2 > 1

and F = (z,y,2).

Compute ffs(rot F).dS, where S'is 22 + 3?2 + 22 =1, 2 > 0, and F = (2, —¢3,0).

Compute [ [4(rot F).dS, where S is 2 + y? + 22% = 10, et F = (sin(zy), e”, —yz).
3d Green Theorem

Let S be a closed surface. Let F' be a vector field. Show that [ [¢(rot F).dS = 0.

Let F = (22,93, 2%). Compute the flux of F accross the unit sphere.

Let Q be the unit cube (in the usual part of IR*). Compute [ Jo F.dS (two ways):

(a) F=(z,y,%)
(b) F=(1,1,1)

(c) F=(a%2% 2%
Let F = (x,y,xz). Compute [ [, F.dS when Q is given by

(a) 22 +9y?<2z<1
(b) 22 +y?<z<landz>0

(c) 22+’ <z<ladx<0

Same as the previous exercice with F' = (z —y,y — 2,2 — z).



