Probability and Statistics

Radjesvarane ALEXANDRE
November 6, 2016

Chapter 1

Probability Spaces

Chapter 2
Random Variables

Chapter 3

2d Random Vectors

Chapter 4

Limit Theorems

Theorem 4.0.1

Weak law of large numbers

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d r.v. such that $E\left(X_{1}\right)=\mu \in \mathbb{R}$. Let

$$
S_{n}=\sum_{k=1}^{n} X_{k} \text { and } M_{n} \equiv \frac{S_{n}}{n}
$$

Then for any constant $\varepsilon>0$, we have

$$
\lim _{n \rightarrow+\infty} P\left(\left|M_{n}-\mu\right|<\varepsilon\right)=1
$$

Statistics Vocabulary

We say that μ is the mean of the population and that S_{n} / n is the mean of a random sample of size n of the population. The above theorem says that the mean of the sample converges towards the mean of the population.

In practise, if the mean μ is unknown, we can estimate it by using the mean of a sample of the population. Bigger is the size of the sample, better would be the approximation of μ by the numerical value taken by S_{n} / n.

Theorem 4.0.2

Strong law of large numbers
Let X_{1}, X_{2}, \ldots be a sequence of i.i.d r.v. such that $E\left(X_{1}\right)=\mu \in \mathbb{R}$ and $\operatorname{Var}\left(X_{1}\right)<+\infty$. Then

$$
P\left[\lim _{n \rightarrow+\infty} \frac{S_{n}}{n}=\mu\right]=1
$$

Remarks 4.0.1

i) In the case of the weak law: we say that S_{n} / n converges in probability. In the case of the
strong law : we say that S_{n} / n converges almost surely (towards μ in both cases).
ii) If we apply the strong law of large numbers to the relative frequencies, we find that the relative frequency of an event A converges towards the probability of A with probability 1.

Exemple: Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. r.v. following an exponential law with parameter λ. Let us introduce the characteristic function

$$
I_{k}=1 \text { if } X_{k}>1 \text { and } 0 \text { otherwise }
$$

for all k. As I_{k} follows a Bernoulli law with parameters $p=P\left(X_{k}>1\right)=e^{-1}$, the strong law of large numbers says that

$$
\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} \frac{I_{k}}{n}=E\left(I_{k}\right)=p=e^{-1}
$$

with probability 1.
\odot

Theorem 4.0.3

Central Limit Theorem

Let $X_{1}, \ldots X_{n}, \ldots$ be i.i.d. r.v. with finite mean μ and variance σ^{2}. Set

$$
S_{n}=X_{1}+\ldots+X_{n}
$$

and

$$
Z_{n}=\frac{S_{n}-n \mu}{\sqrt{n} \sigma}=\frac{S_{n} / n-\mu}{\sigma / \sqrt{n}}
$$

Then the distribution function of Z_{n} converges towards the distribution function of a law $N(0,1)$
This may be written also as:

$$
S_{n} \sim N\left(n \mu, n \sigma^{2}\right) \text { for } n \text { large }
$$

or

$$
\frac{S_{n}}{n} \sim N\left(\mu, \sigma^{2} / n\right) \text { for } n \text { large }
$$

In general, if $n \geq 30$, we may use the gaussian distribution to approximate the exact distribution of Z_{n}.

One may generalize CLT to the following case :
if $X_{1}, \ldots, X_{n}, \ldots$ are independent r.v., then S_{n} / n follows approximatively, for n suffiently large, a gaussian law with parameters

$$
\mu=\frac{1}{n} \sum_{k=1}^{n} E\left(X_{k}\right) \text { and } \sigma^{2}=\frac{1}{n^{2}} \sum_{k=1}^{n} \operatorname{Var}\left(X_{k}\right)
$$

Thus, we do not need that all r.v. X_{k} are i.d.

Exemple: Let $X_{1}, \ldots, X_{n}, \ldots$ be i.i.d. r.v. with same law as a discrete rv X, whose mass function is given by

x	-1	0	2	Σ
$p_{X}(x)$	$1 / 2$	$1 / 8$	$3 / 8$	1

Here is the table for S_{2} :

x	-2	-1	0	1	2	4	Σ
$p_{S_{2}}(x)$	$1 / 4$	$1 / 8$	$1 / 64$	$3 / 8$	$3 / 32$	$9 / 64$	1

Try to compute other cases.
\odot
Exemple: A computer, when adding numbers, rounds up each number to the nearest integer. Assume that round up errors are independent and follow an uniform law over $(-1 / 2,1 / 2)$. If 1500 numbers are added, what is the probability that the total error, in absolute value, will be bigger that 15 ?
We introduce E for the total error obtained by rounding the 1500 numbers. Then we may write $E=$ $E_{1}+\ldots+E_{1500}$ where E_{k} is the round up error for the k-th number. As $E_{k} \sim U(-1 / 2,1 / 2)$, and the E_{k} are independent, we have

$$
E \sim N(1500(0), 1500(1 / 12)) \text { approximatively }
$$

by CLT: $E\left(E_{k}\right)=0$ and $\operatorname{var}\left(E_{k}\right)=[1 / 2-(-1 / 2)]^{2} / 12$.
We look for

$$
P(|E|>15) \simeq 2[1-\Phi(1,34)] \simeq_{\text {table }} 2(1-0,91) \simeq 0,18
$$

Careful: it is not true that $E \sim U(-750,750)$. If it was the case, then we would have obtained the wrong result that

$$
P(|E|>15)=\ldots=0,98
$$

In fact, the sum of two independent uniform r.v. is no more uniform (otherwise, there would be a contradiction with CLT if we were to add up a large number of uniform i.i.d. r.v.).

Theorem 4.0.4

Another form of CLT Let X_{i} be independent r.v., and set

$$
X=X_{1}+\ldots+X_{n}
$$

with mean $\mu=\mu_{1}+\ldots+\mu_{n}$ and variance $\sigma^{2}=\sigma_{1}^{2}+\ldots \sigma_{n}^{2}$. Then, under some general assumptions, the distribution $F_{X}(x)$ of X converges towards the normal distribution, with the same mean and same variance:

$$
F_{X}(x) \simeq \Phi\left(\frac{x-\mu}{\sigma}\right)
$$

when n increases. That is, if $Z=\frac{X-\mu}{\sigma}$ then

$$
F_{Z}(z) \rightarrow \Phi(z) \equiv \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

Sufficient conditions for applying this result are:
a) $\sigma_{1}^{2}+\ldots+\sigma_{n}^{2} \rightarrow+\infty$;
b) there exists a number $\alpha>2$ and a constant K such that

$$
\int x^{\alpha} f_{i}(x) d x<K, \forall i .
$$

4.1 Approximation of a binomial law by a gaussian law

Let $X \sim B(n, p)$.
As we may represent X by the sum of n i.i.d. Bernoulli r.v., we may use CLT to approximate the distribution of X.

Indeed we may write $X=\sum_{k=1}^{n} X_{k}$, with X_{k} being 1 if the k-th trial is a success. That is the binomial law counts for the number of 1 obtained after n Bernoulli trials.

de Moivre-Laplace approximation

If n is large enough and p close enough to $1 / 2$, we may write

$$
p_{X}(k) \simeq f_{Z}(k)
$$

where $\mathrm{Z} \sim N(n p, n p q)$, as $E(X)=n p$ and $\operatorname{Var}(X)=n p q)$.
This approximation is good if $\min \{n p, n q\} \geq 5$.
Thus, if $p=1 / 2$, then $n \geq 10$ is enough to get a good approximation.
If $p=1 / 100$, then $n \geq 100$! In fact, if p is too small, or too close to 1 , Poisson approximation (see below) is used instead.

Exemple: If 20% of diodes manufactured by a specific machine are defective, what is the probability that in a lot of 100 diodes taken at random (and without reset) produced by this machine, we have exactly 15 defective?
If X denotes the number of defective diodes, among the 100 examined, then it follows a binomial law with parameters $n=100$ and $p=0,20$. We look for

$$
P(X=15)=P(14,5 \leq X \leq 15,5) \simeq P(14,5 \leq Z \leq 15,5)
$$

with $Z \simeq N(20,16)$ and we find

$$
=\Phi(1,375)-\Phi(1,125) \simeq 0,9155-0,8697 \simeq 0,0458
$$

If we had used the formula for the density, we would have obtained

$$
f_{Z}(15)=\frac{1}{\sqrt{2 \pi} \cdot 4} \exp \left\{-\frac{1}{2} \frac{(15-20)^{2}}{16}\right\} \simeq 0,0457
$$

In fact, one can show that with the exact binomial law, we get nearly 0,0481 . If we use Poisson instead we find 0,0516 . That is, the success probability $p=0,20$ is too large in order to use Poisson.

We may be a little more precice mathematically, without using CLT (but in fact one of its various proofs), and based on Stirling formula

$$
n!\simeq n^{n} e^{-n} \sqrt{2 \pi n} \text { when } n \rightarrow+\infty
$$

Proposition 4.1.1

De Moivre-Laplace If npq is large w.r.t. 1, then

$$
C_{k}^{n} p^{k} q^{n-k} \text { is equivalent to } \frac{1}{\sqrt{2 \pi n p q}} e^{-(k-n p)^{2} / 2 n p q}
$$

for k in an interval of size $\sqrt{n p q}$ centered at $n p$, and for $n \rightarrow+\infty$.

Exemple: We throw a coin 1000 times. We look for the probability p_{a} to obtain 500 times "head" and the probability p_{b} to obtain 510 times "head".
Here $p=q=0,5, n=1000$ and $n p q=5 \sqrt{10}$. For $p a$, we have $k=500$, then $k-n p=0$ and then de Moivre-Laplace gives

$$
p_{a} \simeq \frac{1}{\sqrt{2 \pi n p q}}=\frac{1}{10 \sqrt{5 \pi}} \simeq 0,0252
$$

For p_{b}, we obtain $p_{b} \simeq 0,0207$.
\odot
It follows from de Moivre-Laplace (using integral calculus) that

$$
\sum_{k=k_{1}}^{k_{2}} C_{k}^{n} p^{k} q^{n-k} \simeq \Phi\left(\frac{k_{2}-n p}{\sqrt{n p q}}\right)-\Phi\left(\frac{k_{1}-n p}{\sqrt{n p q}}\right)
$$

This approximation is good if $n p q$ is very large compared to 1 and if the differences $k_{1}-n p$ and $k_{2}-n p$ are of the same order as $\sqrt{n p q}$.

In fact, one can show that

$$
\sum_{k=k_{1}}^{k_{2}} C_{k}^{n} p^{k} q^{n-k} \simeq \Phi\left(\frac{k_{2}+0,5-n p}{\sqrt{n p q}}\right)-\Phi\left(\frac{k_{1}-0,5-n p}{\sqrt{n p q}}\right)
$$

Exemple: We throw a coin 10000 times. We look for the proability to obtain a number of "head" between 4900 and 5100.
Here $n=10000, p=q=0,5, k_{1}=4900$ and $k_{2}=5100$. As $\frac{k_{2}+0,5-n p}{\sqrt{n p q}}=100 / 50$ and $\frac{k_{1}-0,5-n p}{\sqrt{n p q}}=-100 / 50$, we conclude with the previous formula that the sought probability is $\Phi(2)-\Phi(-2)=2 \Phi(2)-1 \simeq 0,9545$.

Remarque: One may also show that if $n \gg 1$ and $n p \gg 1$, then we have

$$
\sum_{k=0}^{k_{2}} C_{k}^{n} p^{k} q^{n-k} \simeq \Phi\left(\frac{k_{2}-n p}{\sqrt{n p q}}\right)
$$

Approximation de type Poisson

We just have seen how to approximate $C_{k}^{n} p^{k} q^{n-k}$, that is the probability that an event A occurs k times among n trials.

Now we are going to find an approximation for this probability, when $p \ll 1$.
If n is sufficiently large so that $n p \simeq n p q \gg 1$, we can still use de Moivre Laplace.
However, if $n p$ is of the order of 1 , it does not work anymore. We have to use instead the following apprximation: for k of the order of $n p$,

$$
C_{k}^{n} p^{k} q^{n-k} \simeq e^{-n p} \frac{(n p)^{k}}{k!}
$$

More precisely, we have

Proposition 4.1.2

Poisson If $n \rightarrow+\infty, p \rightarrow 0$ and $n p \rightarrow a$, then

$$
C_{k}^{n} p^{k} q^{n-k} \rightarrow e^{-a} \frac{a^{k}}{k!}
$$

We also deduce that

$$
P\left(k_{1} \leq k \leq k_{2}\right) \simeq e^{-n p} \sum_{k=k_{1}}^{k_{2}} \frac{(n p)^{k}}{k!}
$$

Exemple: A system contains 1000 components. Each component fails eventually independently from each other, and the probability of a failure per month is of 10^{-3}. We look for the probability that the system works (that is no component fails) at the end of one month.
Here, we may consider that is is a repeated trials problem, with $p=10^{-3}, n=10^{3}$ and $k=0$. Thus

$$
P(k=0)=q^{n}=0,999^{1000}
$$

As $n p=1$, Poisson type approximation gives

$$
P(k=0) \simeq e^{-n p}=e^{-1}=0,368
$$

