
Probability and Statistics

Radjesvarane ALEXANDRE

November 6, 2016



Chapter 1

Probability Spaces

1



Chapter 2

Random Variables

2



Chapter 3

2d Random Vectors

3



Chapter 4

Limit Theorems

Theorem 4.0.1

Weak law of large numbers

Let X1, X2, ... be a sequence of i.i.d r.v. such that E(X1) = µ ∈ IR . Let

Sn =
n

∑
k=1

Xk and Mn ≡
Sn

n

Then for any constant ε > 0, we have

lim
n→+∞

P(|Mn − µ| < ε) = 1

Statistics Vocabulary
We say that µ is the mean of the population and that Sn/n is the mean of a random sample of

size n of the population. The above theorem says that the mean of the sample converges towards the
mean of the population.

In practise, if the mean µ is unknown, we can estimate it by using the mean of a sample of the
population. Bigger is the size of the sample, better would be the approximation of µ by the numerical
value taken by Sn/n.

Theorem 4.0.2

Strong law of large numbers

Let X1, X2, ... be a sequence of i.i.d r.v. such that E(X1) = µ ∈ IR and Var(X1) < +∞ . Then

P[ lim
n→+∞

Sn

n
= µ] = 1

Remarks 4.0.1

i) In the case of the weak law : we say that Sn/n converges in probability . In the case of the
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strong law : we say that Sn/n converges almost surely (towards µ in both cases).
ii) If we apply the strong law of large numbers to the relative frequencies, we find that the

relative frequency of an event A converges towards the probability of A with probability 1.

Exemple : Let X1, X2, ... be a sequence of i.i.d. r.v. following an exponential law with parameter λ. Let us
introduce the characteristic function

Ik = 1 if Xk > 1 and 0 otherwise

for all k. As Ik follows a Bernoulli law with parameters p = P(Xk > 1) = e−1, the strong law of large
numbers says that

lim
n→+∞

n

∑
k=1

Ik
n

= E(Ik) = p = e−1

with probability 1.
�

Theorem 4.0.3

Central Limit Theorem
Let X1, ... Xn, ... be i.i.d. r.v. with finite mean µ and variance σ2 . Set

Sn = X1 + ... + Xn

and
Zn =

Sn − nµ√
nσ

=
Sn/n− µ

σ/
√

n

Then the distribution function of Zn converges towards the distribution function of a law N(0, 1) .

This may be written also as:

Sn ∼ N(nµ, nσ2) for n large

or
Sn

n
∼ N(µ, σ2/n) for n large

In general, if n ≥ 30, we may use the gaussian distribution to approximate the exact distribution
of Zn.

One may generalize CLT to the following case :
if X1, ..., Xn, ... are independent r.v., then Sn/n follows approximatively, for n suffiently large, a

gaussian law with parameters

µ =
1
n

n

∑
k=1

E(Xk) and σ2 =
1
n2

n

∑
k=1

Var(Xk)

Thus, we do not need that all r.v. Xk are i.d.
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Exemple : Let X1, ..., Xn, ... be i.i.d. r.v. with same law as a discrete rv X, whose mass function is given by

x −1 0 2 Σ
pX(x) 1/2 1/8 3/8 1

Here is the table for S2:

x −2 −1 0 1 2 4 Σ
pS2(x) 1/4 1/8 1/64 3/8 3/32 9/64 1

Try to compute other cases.
�

Exemple : A computer, when adding numbers, rounds up each number to the nearest integer. Assume that
round up errors are independent and follow an uniform law over (−1/2, 1/2). If 1500 numbers are added,
what is the probability that the total error, in absolute value, will be bigger that 15?
We introduce E for the total error obtained by rounding the 1500 numbers. Then we may write E =
E1 + ... + E1500 where Ek is the round up error for the k-th number. As Ek ∼ U(−1/2, 1/2), and the Ek are
independent, we have

E ∼ N(1500(0), 1500(1/12)) approximatively

by CLT: E(Ek) = 0 and var(Ek) = [1/2− (−1/2)]2/12.
We look for

P(|E| > 15) ' 2[1−Φ(1, 34)] 'table 2(1− 0, 91) ' 0, 18

Careful: it is not true that E ∼ U(−750, 750). If it was the case, then we would have obtained the wrong
result that

P(|E| > 15) = ... = 0, 98

In fact, the sum of two independent uniform r.v. is no more uniform (otherwise, there would be a contra-
diction with CLT if we were to add up a large number of uniform i.i.d. r.v.).

Theorem 4.0.4

Another form of CLT Let Xi be independent r.v., and set

X = X1 + ... + Xn

with mean µ = µ1 + ...+ µn and variance σ2 = σ2
1 + ...σ2

n . Then, under some general assumptions,
the distribution FX(x) of X converges towards the normal distribution, with the same mean and
same variance:

FX(x) ' Φ(
x− µ

σ
)

when n increases. That is, if Z = X−µ
σ then

FZ(z)→ Φ(z) ≡ 1√
2π

e−z2/2
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Sufficient conditions for applying this result are:
a) σ2

1 + ... + σ2
n → +∞;

b) there exists a number α > 2 and a constant K such that∫
xα fi(x)dx < K, ∀i.

4.1 Approximation of a binomial law by a gaussian law

Let X ∼ B(n, p).
As we may represent X by the sum of n i.i.d. Bernoulli r.v., we may use CLT to approximate the

distribution of X.
Indeed we may write X = ∑n

k=1 Xk, with Xk being 1 if the k-th trial is a success. That is the
binomial law counts for the number of 1 obtained after n Bernoulli trials.

de Moivre-Laplace approximation

If n is large enough and p close enough to 1/2, we may write

pX(k) ' fZ(k)

where Z ∼ N(np, npq), as E(X) = np and Var(X) = npq).
This approximation is good if min{np, nq} ≥ 5.
Thus, if p = 1/2, then n ≥ 10 is enough to get a good approximation.
If p = 1/100, then n ≥ 100! In fact, if p is too small, or too close to 1, Poisson approximation (see

below) is used instead.

Exemple : If 20% of diodes manufactured by a specific machine are defective, what is the probability that in
a lot of 100 diodes taken at random (and without reset) produced by this machine, we have exactly 15
defective?
If X denotes the number of defective diodes, among the 100 examined, then it follows a binomial law with
parameters n = 100 and p = 0, 20. We look for

P(X = 15) = P(14, 5 ≤ X ≤ 15, 5) ' P(14, 5 ≤ Z ≤ 15, 5)

with Z ' N(20, 16) and we find

= Φ(1, 375)−Φ(1, 125) ' 0, 9155− 0, 8697 ' 0, 0458

If we had used the formula for the density, we would have obtained

fZ(15) =
1√

2π.4
exp{−1

2
(15− 20)2

16
} ' 0, 0457

In fact, one can show that with the exact binomial law, we get nearly 0, 0481. If we use Poisson instead we
find 0, 0516. That is, the success probability p = 0, 20 is too large in order to use Poisson.
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We may be a little more precice mathematically, without using CLT (but in fact one of its various
proofs), and based on Stirling formula

n! ' nne−n
√

2πn when n→ +∞

Proposition 4.1.1

De Moivre-Laplace If npq is large w.r.t. 1, then

Cn
k pkqn−kis equivalent to

1√
2πnpq

e−(k−np)2/2npq

for k in an interval of size
√

npq centered at np, and for n→ +∞.

Exemple : We throw a coin 1000 times. We look for the probability pa to obtain 500 times ”head” and the
probability pb to obtain 510 times ”head”.

Here p = q = 0, 5, n = 1000 and npq = 5
√

10. For pa, we have k = 500, then k − np = 0 and then de
Moivre-Laplace gives

pa '
1√

2πnpq
=

1
10
√

5π
' 0, 0252

For pb, we obtain pb ' 0, 0207.
�

It follows from de Moivre-Laplace (using integral calculus) that

k2

∑
k=k1

Cn
k pkqn−k ' Φ(

k2 − np
√

npq
)−Φ(

k1 − np
√

npq
)

This approximation is good if npq is very large compared to 1 and if the differences k1 − np and
k2 − np are of the same order as

√
npq.

In fact, one can show that

k2

∑
k=k1

Cn
k pkqn−k ' Φ(

k2 + 0, 5− np
√

npq
)−Φ(

k1 − 0, 5− np
√

npq
)

Exemple : We throw a coin 10000 times. We look for the proability to obtain a number of ”head” between 4900
and 5100.
Here n = 10000, p = q = 0, 5, k1 = 4900 and k2 = 5100. As k2+0,5−np√

npq = 100/50 and k1−0,5−np√
npq = −100/50,

we conclude with the previous formula that the sought probability is Φ(2)−Φ(−2) = 2Φ(2)− 1 ' 0, 9545.

Remarque : One may also show that if n >> 1 andnp >> 1, then we have

k2

∑
k=0

Cn
k pkqn−k ' Φ(

k2 − np
√

npq
)
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Approximation de type Poisson

We just have seen how to approximate Cn
k pkqn−k, that is the probability that an event A occurs k

times among n trials.
Now we are going to find an approximation for this probability, when p << 1.
If n is sufficiently large so that np ' npq >> 1, we can still use de Moivre Laplace.
However, if np is of the order of 1, it does not work anymore. We have to use instead the following

apprximation: for k of the order of np,

Cn
k pkqn−k ' e−np (np)k

k!
More precisely, we have

Proposition 4.1.2

Poisson If n→ +∞, p→ 0 and np→ a, then

Cn
k pkqn−k → e−a ak

k!

We also deduce that

P(k1 ≤ k ≤ k2) ' e−np
k2

∑
k=k1

(np)k

k!

Exemple : A system contains 1000 components. Each component fails eventually independently from each
other, and the probability of a failure per month is of 10−3. We look for the probability that the system
works (that is no component fails) at the end of one month.
Here, we may consider that is is a repeated trials problem, with p = 10−3, n = 103 and k = 0. Thus

P(k = 0) = qn = 0, 9991000

As np = 1, Poisson type approximation gives

P(k = 0) ' e−np = e−1 = 0, 368

�
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