Probability and Statistics

Radjesvarane ALEXANDRE

November 6, 2016

Probability Spaces

Random Variables

2d Random Vectors

Limit Theorems

Theorem 4.0.1

Weak law of large numbers

Let X_1 , X_2 , ... be a sequence of *i.i.d* r.v. such that $E(X_1) = \mu \in \mathbb{R}$. Let

$$S_n = \sum_{k=1}^n X_k$$
 and $M_n \equiv \frac{S_n}{n}$

Then for any constant $\varepsilon > 0$, we have

$$\lim_{n\to+\infty} P(|M_n-\mu|<\varepsilon)=1$$

Statistics Vocabulary

We say that μ is the mean of the population and that S_n/n is the mean of a random sample of size *n* of the population. The above theorem says that the mean of the sample converges towards the mean of the population.

In practise, if the mean μ is unknown, we can estimate it by using the mean of a sample of the population. Bigger is the size of the sample, better would be the approximation of μ by the numerical value taken by S_n/n .

Theorem 4.0.2

Strong law of large numbers
Let
$$X_1, X_2, ...$$
 be a sequence of i.i.d r.v. such that $E(X_1) = \mu \in \mathbb{R}$ and $Var(X_1) < +\infty$. Then
 $P[\lim_{n \to +\infty} \frac{S_n}{n} = \mu] = 1$

Remarks 4.0.1

i) In the case of the weak law: we say that S_n/n converges in probability. In the case of the

strong law : we say that S_n/n converges almost surely (towards μ in both cases).

ii) If we apply the strong law of large numbers to the relative frequencies, we find that the relative frequency of an event A converges towards the probability of A with probability 1.

Exemple: Let X_1 , X_2 , ... be a sequence of i.i.d. r.v. following an exponential law with parameter λ . Let us introduce the characteristic function

 $I_k = 1$ if $X_k > 1$ and 0 otherwise

for all *k*. As I_k follows a Bernoulli law with parameters $p = P(X_k > 1) = e^{-1}$, the strong law of large numbers says that

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{I_k}{n} = E(I_k) = p = e^{-1}$$

with probability 1. \odot

Theorem 4.0.3

Central Limit Theorem Let $X_1, ..., X_n, ...$ be i.i.d. r.v. with finite mean μ and variance σ^2 . Set $S_n = X_1 + ... + X_n$

and

$$Z_n = \frac{S_n - n\mu}{\sqrt{n}\sigma} = \frac{S_n / n - \mu}{\sigma / \sqrt{n}}$$

Then the distribution function of Z_n converges towards the distribution function of a law N(0,1)

This may be written also as:

$$S_n \sim N(n\mu, n\sigma^2)$$
 for *n* large

or

$$\frac{S_n}{n} \sim N(\mu, \sigma^2/n)$$
 for *n* large

In general, if $n \ge 30$, we may use the gaussian distribution to approximate the exact distribution of Z_n .

One may generalize **CLT to the following case** :

if $X_1, ..., X_n, ...$ are independent r.v., then S_n/n follows approximatively, for *n* sufficiently large, a gaussian law with parameters

$$\mu = \frac{1}{n} \sum_{k=1}^{n} E(X_k) \text{ and } \sigma^2 = \frac{1}{n^2} \sum_{k=1}^{n} Var(X_k)$$

Thus, we do not need that all r.v. X_k are i.d.

Exemple: Let *X*₁, ..., *X*_n, ... be i.i.d. r.v. with same law as a discrete rv *X*, whose mass function is given by

x	-1	0	2	Σ
$p_X(x)$	1/2	1/8	3/8	1

Here is the table for S_2 :

x	-2	-1	0	1	2	4	Σ
$p_{S_2}(x)$	1/4	1/8	1/64	3/8	3/32	9/64	1

Try to compute other cases.

 \odot

Exemple : A computer, when adding numbers, rounds up each number to the nearest integer. Assume that round up errors are independent and follow an uniform law over (-1/2, 1/2). If 1500 numbers are added, what is the probability that the total error, in absolute value, will be bigger that 15?

We introduce E for the total error obtained by rounding the 1500 numbers. Then we may write $E = E_1 + ... + E_{1500}$ where E_k is the round up error for the *k*-th number. As $E_k \sim U(-1/2, 1/2)$, and the E_k are independent, we have

 $E \sim N(1500(0), 1500(1/12))$ approximatively

by CLT: $E(E_k) = 0$ and $var(E_k) = [1/2 - (-1/2)]^2/12$. We look for

 $P(|E| > 15) \simeq 2[1 - \Phi(1, 34)] \simeq_{table} 2(1 - 0, 91) \simeq 0, 18$

Careful: it is not true that $E \sim U(-750, 750)$. If it was the case, then we would have obtained the wrong result that

 $P(|E| > 15) = \dots = 0,98$

In fact, the sum of two independent uniform r.v. is no more uniform (otherwise, there would be a contradiction with CLT if we were to add up a large number of uniform i.i.d. r.v.).

Theorem 4.0.4

Another form of CLT Let X_i be independent r.v., and set

$$X = X_1 + \ldots + X_n$$

with mean $\mu = \mu_1 + ... + \mu_n$ and variance $\sigma^2 = \sigma_1^2 + ... \sigma_n^2$. Then, under some general assumptions, the distribution $F_X(x)$ of X converges towards the normal distribution, with the same mean and same variance:

$$F_X(x) \simeq \Phi(\frac{x-\mu}{\sigma})$$

when *n* increases. That is, if $Z = \frac{X-\mu}{\sigma}$ then

$$F_Z(z) o \Phi(z) \equiv rac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

Sufficient conditions for applying this result are: a) $\sigma_1^2 + ... + \sigma_n^2 \rightarrow +\infty$; b) there exists a number $\alpha > 2$ and a constant *K* such that

$$\int x^{\alpha} f_i(x) dx < K, \forall i.$$

4.1 Approximation of a binomial law by a gaussian law

Let $X \sim B(n, p)$.

As we may represent X by the sum of *n* i.i.d. Bernoulli r.v., we may use CLT to approximate the distribution of X.

Indeed we may write $X = \sum_{k=1}^{n} X_k$, with X_k being 1 if the *k*-th trial is a success. That is the binomial law counts for the number of 1 obtained after *n* Bernoulli trials.

de Moivre-Laplace approximation

If *n* is large enough and *p* close enough to 1/2, we may write

$$p_X(k) \simeq f_Z(k)$$

where $Z \sim N(np, npq)$, as E(X) = np and Var(X) = npq).

This approximation is good if $min\{np, nq\} \ge 5$.

Thus, if p = 1/2, then $n \ge 10$ is enough to get a good approximation.

If p = 1/100, then $n \ge 100!$ In fact, if p is too small, or too close to 1, Poisson approximation (see below) is used instead.

Exemple: If 20% of diodes manufactured by a specific machine are defective, what is the probability that in a lot of 100 diodes taken at random (and without reset) produced by this machine, we have exactly 15 defective?

If X denotes the number of defective diodes, among the 100 examined, then it follows a binomial law with parameters n = 100 and p = 0, 20. We look for

$$P(X = 15) = P(14, 5 \le X \le 15, 5) \simeq P(14, 5 \le Z \le 15, 5)$$

with $Z \simeq N(20, 16)$ and we find

$$= \Phi(1,375) - \Phi(1,125) \simeq 0,9155 - 0,8697 \simeq 0,0458$$

If we had used the formula for the density, we would have obtained

$$f_Z(15) = \frac{1}{\sqrt{2\pi}.4} exp\{-\frac{1}{2}\frac{(15-20)^2}{16}\} \simeq 0,0457$$

In fact, one can show that with the exact binomial law, we get nearly 0,0481. If we use Poisson instead we find 0,0516. That is, the success probability p = 0,20 is too large in order to use Poisson.

We may be a little more precice mathematically, without using CLT (but in fact one of its various proofs), and based on Stirling formula

$$n! \simeq n^n e^{-n} \sqrt{2\pi n}$$
 when $n \to +\infty$

Proposition 4.1.1

De Moivre-Laplace If npq is large w.r.t. 1, then

$$C_k^n p^k q^{n-k}$$
 is equivalent to $\frac{1}{\sqrt{2\pi npq}} e^{-(k-np)^2/2npq}$

for *k* in an interval of size \sqrt{npq} centered at *np*, and for $n \to +\infty$.

Exemple: We throw a coin 1000 times. We look for the probability p_a to obtain 500 times "head" and the probability p_b to obtain 510 times "head".

Here p = q = 0, 5, n = 1000 and $npq = 5\sqrt{10}$. For p_a , we have k = 500, then k - np = 0 and then de Moivre-Laplace gives

$$p_a \simeq \frac{1}{\sqrt{2\pi n p q}} = \frac{1}{10\sqrt{5\pi}} \simeq 0,0252$$

For p_b , we obtain $p_b \simeq 0,0207$. \odot

It follows from de Moivre-Laplace (using integral calculus) that

$$\sum_{k=k_1}^{k_2} C_k^n p^k q^{n-k} \simeq \Phi(\frac{k_2 - np}{\sqrt{npq}}) - \Phi(\frac{k_1 - np}{\sqrt{npq}})$$

This approximation is good if *npq* is very large compared to 1 and if the differences $k_1 - np$ and $k_2 - np$ are of the same order as \sqrt{npq} .

In fact, one can show that

$$\sum_{k=k_1}^{k_2} C_k^n p^k q^{n-k} \simeq \Phi(\frac{k_2 + 0, 5 - np}{\sqrt{npq}}) - \Phi(\frac{k_1 - 0, 5 - np}{\sqrt{npq}})$$

Exemple: We throw a coin 10000 times. We look for the proability to obtain a number of "head" between 4900 and 5100.

Here n = 10000, p = q = 0, 5, $k_1 = 4900$ and $k_2 = 5100$. As $\frac{k_2 + 0.5 - np}{\sqrt{npq}} = 100/50$ and $\frac{k_1 - 0.5 - np}{\sqrt{npq}} = -100/50$, we conclude with the previous formula that the sought probability is $\Phi(2) - \Phi(-2) = 2\Phi(2) - 1 \simeq 0,9545$.

Remarque : One may also show that if n >> 1 and np >> 1, then we have

$$\sum_{k=0}^{k_2} C_k^n p^k q^{n-k} \simeq \Phi(\frac{k_2 - np}{\sqrt{npq}})$$

Approximation de type Poisson

We just have seen how to approximate $C_k^n p^k q^{n-k}$, that is the probability that an event A occurs *k* times among *n* trials.

Now we are going to find an approximation for this probability, when $p \ll 1$.

If *n* is sufficiently large so that $np \simeq npq >> 1$, we can still use de Moivre Laplace.

However, if *np* is of the order of 1, it does not work anymore. We have to use instead the following apprximation: for *k* of the order of *np*,

$$C_k^n p^k q^{n-k} \simeq e^{-np} \frac{(np)^k}{k!}$$

More precisely, we have

Proposition 4.1.2

Poisson If $n \to +\infty$, $p \to 0$ and $np \to a$, then

$$C_k^n p^k q^{n-k} \to e^{-a} \frac{a^k}{k!}$$

We also deduce that

$$P(k_1 \le k \le k_2) \simeq e^{-np} \sum_{k=k_1}^{k_2} \frac{(np)^k}{k!}$$

Exemple: A system contains 1000 components. Each component fails eventually independently from each other, and the probability of a failure per month is of 10^{-3} . We look for the probability that the system works (that is no component fails) at the end of one month.

Here, we may consider that is is a repeated trials problem, with $p = 10^{-3}$, $n = 10^{3}$ and k = 0. Thus

$$P(k=0) = q^n = 0,999^{1000}$$

As np = 1, Poisson type approximation gives

$$P(k=0) \simeq e^{-np} = e^{-1} = 0,368$$

 \odot