Exercices Chapter 4

1. Let X, Y and Z be three independent r.v. with $\operatorname{var}(X)=1, \operatorname{Var}(Y)=4$ and $\operatorname{Var}(Z)=11$. Set $W=3 X+2 Y-Z$. Compute $\operatorname{std}(W)$.
2. Let X be a r.v. with $E(X)=\operatorname{Var}(X)=1$. Use CLT to compute apprximatively $P\left(\sum_{k=1}^{36} X_{k}<42\right)$, with the X_{k} i.i.d. as X.
3. Let $X \simeq B(n=25, p=1 / 2)$. Use the approximation of a binomial law by a gaussian law to compute $P(X<12)$.
4. Let X_{1}, \ldots, X_{50} be r.v. with the same geometric law with parameter $p=1 / 4$ and S their sum.
(a) Compute $\operatorname{Var}(S)$ if the correlation coefficients are all equal to $1 / 2$.
(b) We assume that all X_{i} are independent. Use CLT to compute $P(S<201)$.
5. Let X_{1}, \ldots, X_{50} be i.i.d. r.v. with law $N(0,1)$. Set $Y=\sum_{k} X_{k}^{2}$.
(a) Compute the mean of Y.
(b) Use CLT to obtain $P(Y<60)$.
6. During a quality control process, one checks the painting of n new cars taken at random among those manufactured by a specific company. Let $X_{k}=1$ if the painting of k-th car has at least one defect, and 0 otherwise. Assume that the r.v. X_{k} are independent and that the probability that the painting of a new car is perfect is 0,75 . Thus X_{k} follows a Bernoulli law with parameters $p=0,25$ for all k.
(a) Compute $\lim _{n \rightarrow+\infty} P\left(\left|\sum_{k} X_{k}-\frac{n}{4}\right| \geq \frac{n}{2}\right)$.
(b) Let $Y \equiv X_{1}+X_{2}$ and $Z=X_{1}-X_{2}$. $\operatorname{Compute} \operatorname{Cov}(Y, Z)$.
(c) Use CLT to compute $P\left(\sum_{k} X_{k}=10\right)$, if $n=40$.
7. (a) Let X, Y and X be r.v. with $\operatorname{var}(X)=1, \operatorname{var}(Y)=4, \operatorname{var}(Z)=9, \operatorname{cov}(X, Y)=1 / 2$, $\operatorname{cov}(X, Z)=0$ and $\operatorname{cov}(Y, Z)=-1 / 2$. Compute $\operatorname{var}(X-Y / 2+Z / 3)$.
(b) We perform 40 independent observations of the r.v. X. Let N be the number of observations greater than 1 . Use CLT to compute the probability that $P(N>5)$ if $X \simeq N(0,1)$.
