
Chapter 4

Fourier series

General idea: represent a complicated function as a sum of very simple functions.

Here we take as simple functions: cos and sin.

4.1 Approximation by infinite sums

Let f : [a, b]→ IR be given. We want to replace f by a more simple function.

For any integer n ≥ 0, let be given functions φn : [a, b] → IR. These functions are supposed

to be simpler than f . In practise, these functions are polynomials, or linear combinations of

cos and sin type functions.

We then want to approximate f by a finite linear combination of these functions φi. That is,

we want to approximate f by a sum sN , where N is an intgeer, with

sN (x) =

N∑
i=1

ciφi(x)

The coefficients ci should be in fact found such that this sum sN will be close to f . The

meaning of ”close” will be detailed below. The most simple way is given by

Définition 4.1.1 Let be given coefficients ci and fonctions φi : [a, b] → IR for all integer i.

We say that the series
∑

n≥1 cnφn converges simply towards the function f if for any x ∈ [a, b]

fixed, the numerical series
∑

n≥1 cnφn(x) converges and has a sum equal to f(x). Thus, if we

set for any integer N and for all x ∈ [a, b]

sN (x) =

N∑
n=1

cnφn(x)

1
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we should have

lim
N→+∞

sN (x) = f(x)

In that case, we shall write
∑+∞

n=1 cnφn = f .

Another convergence is given by quadratic (mean) convergence

Définition 4.1.2 With the same notations, we say that the series
∑

n≥1 cnφn converges

quadratically towards the function f if we have

lim
N→+∞

∫ b

a
| f(x)− sN (x) |2 dx = 0

Définition 4.1.3 Let φ et ψ be two functions [a, b] → IR. We say that they are orthogonal

if we have ∫ b

a
ψ(x)φ(x)dx = 0

For example: a = 1, b = −1 , ψ = 1 et φ = x.

Définition 4.1.4 Let be given for all integer n, a function φn : [a, b]→ IR. We say that they

are orthogonal if for all different integers n and m, we have∫ b

a
φn(x)φm(x)dx = 0

We also say that the sequence {φn} is orthogonal

Now, our goal is to find the coefficients cn such that the series
∑

n≥0 cnφn converges quadrat-

ically towards f , with the assumption that the sequence {φn} is orthogonal. Starting from∫ b

a
| f(x)− sN (x) |2 dx

we expand to get∫ b

a
| f(x)−

N∑
n=1

cnφn(x) |2 dx =

∫ b

a
fr(x)dx− 2

N∑
n=1

cn

∫ b

a
fφndx+

N∑
n=1

c2n

∫ b

a
φ2ndx

The r.h.s can be written as

N∑
n=1

∫ b

a
φ2n{cn −

∫ b
a fφn∫ b
a φ

2
n

}2 +

∫ b

a
f2 −

N∑
n=1

[
∫ b
a fφn]2∫ b
a φ

2
n

Here we need to assume that ∫ b

a
φ2n(x)dx 6= 0 for all n
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The coefficients cn only appear in the first term. As it is a sum of squares (positive), if we

want this to be very small, it is enough to choose cn such that this term is zero. That is we

make the choice

cn =

∫ b
a fφn∫ b
a φ

2
n

Définition 4.1.5 With the previous assumptions, set

cn =

∫ b
a fφn∫ b
a φ

2
n

Then these coefficients are called the Fourier coefficients of f wr.t. the orthogonal sequence

{φn}. We then say that the series
∑

n≥1 cnφn is the Fourier series of f w.r.t. the sequence

{φn}.

We use the notation

f(x) '
∑
n≥1

cnφn

to say that the series on the r.h.s. is the Fourier series of f .

Caution: we do not know if this series converges, simply or quadratically.

4.2 Completion

We have seen that∫ b

a
| f(x)−

N∑
n=1

cnφn(x) |2 dx =

∫ b

a
f2(x)dx−

N∑
n=1

c2n

∫ b

a
φ2n(x)dx

We then deduce

Proposition 4.2.1 Bessel inequality. With the previous assumptions, let cn be the Fourier

coefficients of f w.r.t. the orthogonal sequence {φn}. Then we have the inequality

N∑
n=1

c2n

∫ b

a
φ2n(x)dx ≤

∫ b

a
f2(x)dx

In fact we can even deduce that

Proposition 4.2.2 Generalized Bessel inequality. With the same assumptions, the numeri-

cal and positive series
∑

n≥1 c
2
n

∫ b
a φ

2
n(x)dx converges and moreover its sum satisfies

+∞∑
n=1

c2n

∫ b

a
φ2n(x)dx ≤

∫ b

a
f2(x)dx
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Remember that we should also have

c2n

∫ b

a
φ2n(x)dx→ 0 when n→ +∞

Finally we have

Proposition 4.2.3 If the Fourier series of f w.r.t. the orthogonal sequence {φn} converges

quadratically towards f , then we have∫ b

a
f2(x)dx =

+∞∑
n=1

c2n

∫ b

a
φ2n(x)dx

The opposite is also true.

This is Parseval equality.

4.3 Classical Fourier series

We choose the interval (−π, π) and functions φn:

1, , cosx, sinx, cos 2x, sin 2x, . . .

These functions are continuous by pieces and their squares are integrable. Moreover we have∫ π

−π
12dx = 2π

∫ π

−π
cos2 nxdx =

∫ π

−π
sin2 nxdx = π, n = 1, 2, . . .

Let us set

an =
1

π

∫ π

−π
f(t) cosntdt, n = 0, 1, . . .

bn =
1

π

∫ π

−π
f(t) sinntdt, n = 1, . . .

Then the Fourier series of f is given by

f(x) ' 1

2
a0 + a1 cosx+ b1 sinx+ a2 cos 2x+ b2 sin 2x+ . . .

' 1

2
a0 +

∑
n≥1

an cosnx+ bn sinnx
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Définition 4.3.1 Let f be continuous by pieces and square integrable. Then its Fourier

coefficients are the numbers

an =
1

π

∫ π

−π
f(t) cosntdt, n = 0, 1, . . .

bn =
1

π

∫ π

−π
f(t) sinntdt, n = 1, . . .

The Fourier series of f is:

f(x) ' 1

2
a0 +

∑
n≥1

an cosnx+ bn sinnx

One can check that for all distinct n and m, we have
∫ π
−π cosnx sinmxdx = 0 (orthogonality.

Here are some sufficient conditions to check the simple convergence of the Fourier series

towards f .

Proposition 4.3.1 The Fourier series of f at a given x converges towards f(x), that is we

have the equality

f(x) =
∑
n≥1

an cosnx+ bn sinnx

under one of the following conditions:

1) f is continuous by pieces and integrable and that f is derivable at x fixé.

2) f is Lipschitz of order α at x that is there exists two constants M and α such that

| f(y)− f(x) |≤M | y − x |α, for all y ∈ (−π, π)

Caution: it may appear that if f is only continuous at x, then its Fourier series diverges at

x.

Assume now that f is discontinuous at x but have limits f(x+ 0) and f(x− 0).

Proposition 4.3.2 Assume one of the following conditions at a fixed point x:

1) f is continuous by pieces and integrable and derivable around a small interval cetered

at x and that this derivative is bounded there (maybe except at x).

2) f is continuous by pieces and integrable and Holder at x, that is there exists two positive

constants M and α such that

| f(x)− f(y) |≤M | y − x |α ∀y ∈ [−π, π]

Then we have

lim
N→+∞

sN (x) =
1

2
[f(x+ 0) + f(x− 0)]

that is the Fourier series of f at x converges to the mean 1
2 [f(x+ 0) + f(x− 0)].
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4.4 Other types of convergence

Définition 4.4.1 We say that the Fourier series of f converges uniformly towards a function

g if for all fixed ε f(the error), we can choose N such that | f(x) − sN (x) |< ε, and this for

all x.

Caution: Uniform convergence towards g = f implies simple convergence (but the opposite

is not true).

If f is discontinuous (with a jump) at a given point, there cannot be uniform convergence of

its Fourier series.

In fact we have

Proposition 4.4.1 If a Fourier series of a function f converges uniformly towards f , then

necessarily this function f should be continous and should satisfy , that is f should be 2π

periodic.

Proposition 4.4.2 Let f be a continuous and 2π periodic function. Assume that f is deriv-

able over [−π, π] out of a finite number of points. Assume that out these points, this derivative

is continuous and that the integral
∫ π
−π f

′2(x)dx converges. Then we have

f(x) ' 1

2
a0 +

∞∑
1

(an cosnx+ bn sinnx)

et

f ′(x) '
∞∑
1

(nbn cosnx− nan sinnx)

Théorème 4.4.1 Let f be a continuous function, 2π-periodic and such that
∫ π
−π f

′2dx is

finite. Then its Fourier series convers uniformly towards f .

Exemple 4.4.1 Let f(x) =| x | for all x ∈ [−π, π] and 2π-periodic. Then we have

f(x) ' π

2
− 4

π

∞∑
k=1

cos(2k − 1)x

(2k − 1)2

Note that

f ′(x) = −1 if − π < x < 0 and = 1 if 0 < x < π

and thus f ′ is discontinuous at a finite number of points in [−π;π]. Note that f ′ is not defined

at 0. Finally
∫ π
−π f

′2dx is finite.
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Proposition 4.4.3 If the Fourier series of a function f converges uniformly towards f , the

is also converges quadratically.

In fact we have also

Proposition 4.4.4 Let f be a continous by pieces function on [−π;π], 2π− periodic and

such that
∫ π
−π f

2dx is finite. Then its Fourier series converges quadratically towards f .

We have also Parseval relation

Proposition 4.4.5 Let f and f∗ two continuous by pieces functions with
∫ π
−π f

2(x)dx < +∞
and

∫ π
−π f

∗2(x)dx < +∞. Then if

f(x) ' 1

2
a0 +

∞∑
1

[an cosnx+ bn sinnx],

f∗(x) ' 1

2
a∗0 +

∞∑
1

[a∗n cosnx+ b∗n sinnx],

we have the Pareseval equality∫ π

−π
f(x)f∗(x)dx = π[

1

2
a0a
∗
0 +

∞∑
1

(ana
∗
n + bnb

∗
n)]

Exemple 4.4.2 Let us take the 2π periodic functions defined on [−π, π] by

f(x) = x et f∗(x) = x3

Firstly we have the Fourier expansions

f(x) ' −2

∞∑
1

(−1)n

n
sinnx

f∗(x) = −2
∞∑
1

(
π2

n
− 6

n3
)(−1)n sinnx

Using Parseval equality, we deduce that

2π5

5
=

∫ π

−π
x4dx = 4π

∞∑
1

1

n2
(π2 − 6

n2
)

Then, let us note that if f is continuous and 2π periodic, with
∫
f ′2dx < ∞, then we can

apply Parseval inequlity to f ′ to get

∞∑
1

n2(a2n + b2n) =
1

π

∫ π

−π
f ′2dx
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We deduce that for all M ,

∞∑
M+1

n2(a2n + b2n) =
1

π

∫ π

−π
f ′2dx−

M∑
1

n2(a2n + b2n)

If we apply Parseval inequality to f(x) = x, we get

∞∑
1

1

n2
=
π2

6

Letting N → +∞ in the above equality linking the difference between sN and sM , we obtain

an error made if we approximate f by its Fourier partial sum sM

| f(x)− sM (x) |≤ { 1

π

∫ π

−π
f ′2dx−

M∑
1

n2(a2n + b2n)}
1
2 {π

2

6
−

M∑
1

1

n2
}

1
2

Exemple 4.4.3 Let f(x) =| x | on [−π, π]. Then∫ π

−π
f ′2(x)dx = 2π

f(x) =
π

2
− 4

π

∞∑
1

cos(2k − 1)x

(2k − 1)2

Taking M = 2, we get (note that a2 = b2 = 0)

|| x | −[
π

2
− 4

π
cosx] |≤ {2− 16

π2
}

1
2 {π

2

6
− 1− 1

4
}

1
2 = 0.39

In fact, the maximum is obtained at x = 0 and at x = ∓π, and is equal to 0.30.

4.5 Cosinus and Sinus series

If f is an odd function, then all coefficients an are zero. In that case, we have

f(x) '
∞∑
1

bn sinnx

and moreover

bn =
2

π

∫ π

0
f(x) sinnxdx

If f is an even function, then all coefficients bn are zero. In that case, we have

f(x) ' a0
2

+
∞∑
1

an sinnx

and moreover

an =
2

π

∫ π

0
f(x) sinnxdx



4.6. CHANGE OF SCALES 9

4.6 Change of scales

We have seen that the sequence {cosnx, sinnx} was orthogonal over the interval [−π, π].

This fact is well adapted for the decomposition of functions defined on this interval or even

on half of this interval if we take into consideration the parity of this function.

We can in fact proceed similarly for functions defined over an arbitrary interval [a, b]. For

this purpose, let us introduce the new variable

x̄ =
2π(x− 1

2(a+ b))

b− a

for any x ∈ [a, b]. This new coordinate x̄ sends x ∈ [a, b] on x̄ ∈ [−π, π]. Also, one can check

that

x =
b− a
2π

x̄+
1

2
(a+ b)

The interest of this new variable is that we are back to the interval [−π, π]. Now for any

variable x̄ in [−π, π], introduce the function F defined on [−π, π] by

F (x̄) = f(
b− a
2π

x̄+
1

2
(a+ b))

Note that F (x̄) = f(x). The function F is well defined over [−π, π], and we may consider its

usual Fourier series

F (x̄) ' 1

2
+

∞∑
1

(an cosnx̄+ bn sinnx̄)

where

an =
1

π

∫ π

−π
F (x̄) cosnx̄dx̄

bn =
1

π

∫ π

−π
F (x̄) sinnx̄dx̄

This Fourier series converges quadratically towards F if
∫ π
−π F (x̄)2dx̄ is finite, uniformly if F

is continuous, 2π periodic and
∫ π
−π F

′2dx̄ is finite.

Now if we remember the link between the variables x and x̄, we find that

f(x) ' 1

2
a0 +

∞∑
1

[an cos
2πn

b− a
(x− 1

2
(a+ b)) + bn sin

2πn

b− a
(x− 1

2
(a+ b))],

with

an =
2

b− a

∫ b

a
f(x) cos

2πn

b− a
(x− 1

2
(a+ b))dx

bn =
2

b− a

∫ b

a
f(x) sin

2πn

b− a
(x− 1

2
(a+ b))dx
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Note that the family {cos 2πn
b−a(x − 1

2(a + b)), sin 2πn
b−a(x − 1

2(a + b))} is orthogonal over the

interval [a, b].

We see immediately that this Fourier series converges quadratically towards f if
∫ b
a f(x)2dx

is finite, and uniformly if f is continuous, with f(a) = f(b) and
∫ b
a f
′2(x)dx is finite. All

convergence theorems above remain true here. Similarly, according to the parity of f , we

may expand f in Sin series

f(x) '
∞∑
1

bn sin
πn

b− a
(x− a)

with

bn =
2

b− a

∫ b

a
f(x) sin

πn

b− a
(x− a)dx

or in Cos series

f(x) ' 1

2
+

∞∑
1

an cos
πn

b− a
(x− a)

with

an =
2

b− a

∫ b

a
f(x) cos

πn

b− a
(x− a)dx

4.7 Fourier series with multi variables

Let us deals to simplify with the 2d case.

More precisely, consider a function f : IR2 → IR, the variables here being the couple

(x, y) ∈ IR2 and we assume that f is C1 over IR2 and 2π periodic w.r.t. each of these

variables that is

f(x+ 2π, y) = f(x, y + 2π) = f(x, y)

for all (x, y) ∈ IR2. In particular, if we know f over a square (with sides parallel to the

coordinate axis) of length 2π. In practise, we’ll take the square [−π, π]× [−π, π].

Let us fix the variable y for example. Then we may consider the function f as a function

of the single variable x. Then its Fourier series (w.r.t. variable x) is uniformly convergent

(towards f(x, y)) that is we have

f(x, y) =
1

2
a0 +

∞∑
1

[an cosnx+ bn sinnx]

and this holds for all x ∈ IR.

In fact, as we have fixed the variable x, coefficients an and bn also depend on y and thus we

have

f(x, y) =
1

2
a0(y) +

∞∑
1

[an(y) cosnx+ bn(y) sinnx]
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Thus coefficients an and bn are also function of variable y and are given by

an(y) =
1

π

∫ π

−π
f(x, y) cosnxdx

bn(y) =
1

π

∫ π

−π
f(x, y) sinnxdx

Then for all n, we have

an(y) =
1

2
an0 +

∞∑
1

(anm cosmy + bnm sinmy)

bn(y) =
1

2
cn0 +

∞∑
1

(cnm cosmy + dnm sinmy)

with

anm =
1

π2

∫ π

−π

∫ π

−π
f(x, y) cosnx cosmydxdy

bnm =
1

π2

∫ π

−π

∫ π

−π
f(x, y) cosnx sinmydxdy

cnm =
1

π2

∫ π

−π

∫ π

−π
f(x, y) sinnx cosmydxdy

dnm =
1

π2

∫ π

−π

∫ π

−π
f(x, y) sinnx sinmydxdy

On the whole, we get

f(x, y) =
1

4
a00 +

1

2

∞∑
m=1

[a0m cosmy + b0m sinmy] +
1

2

∞∑
n=1

[an0 cosnx+ cn0 sinnx]+

+
∞∑
n=1

∞∑
m=1

anm cosnx cosmy + bnm cosnx sinmy + cnm sinnx cosmy + dnm sinnx sinny]

Using Parseval equality, we get∫ π

−π
f(x, y)2dx =

π

2
a0(y)2 + π

∞∑
n=1

[an(y)2 + bn(y)2]

and integrating, we get∫ π

−π

∫ π

−π
f(x, y)2dxdy =

π2

2

∫ π

−π
a20dy + π2

∫ π

−π
[a2n + b2n]dy

We have also ∫ π

−π
an(y)2dy =

π

2
a2n0 + π

∞∑
m=1

(a2nm + b2nm)
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∫ π

−π
bn(y)2dy =

π

2
c2n0 + π

∞∑
m=1

(c2nm + d2nm)

In conclusion, we get∫ π

−π

∫ π

−π
f(x, y)2dxdy =

π2

4
a200 +

π2

2

∞∑
n=1

(a2n0 + c2n0)+

+π2
∞∑
n=1

∞∑
m=1

(a2nm + b2nm + c2nm + d2nm)

This is called the Pareseval equality and it holds true for function continuous by pieces and

such that
∫ π
−π

∫ π
−π f(x, y)2dxdy est finie.

4.8 Exercices of this Chapter

1. Let f : IR→ IR, odd, 2π periodic, given by

f(t) = t if 0 ≤ t < π

2
, f(t) = π − t if

π

2
≤ t ≤ π.

(a) Check that f is continuous by pieces and compute its Fourier coefficients.

(b) Study the convergence of its Fourier series.

(c) Deduce the sum of the following series:

∞∑
p=0

1

(2p+ 1)2
,

∞∑
n=1

1

n2
,

∞∑
p=0

1

(2p+ 1)4
,

∞∑
n=1

1

n4
.

2. Give the Fourier series of f , 2π periodic f(x) = x2 sur ] − π; +π]. Deduce the sum of

the following two series:

∞∑
n=1

(−1)n

n2
,

∞∑
n=1

1

n2

3. Compute the Fourier series of f , 2π periodic such that f(x) = x2 − π2 on ] − π; +π].

Compute

∞∑
n=1

1

n4
.

4. Letf : IR→ IR, 2π periodic, defined for x ∈ [−π, π] by f(x) = coshx.

(a) Compute its Fourier series
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(b) Deduce the sum of the following series

∞∑
n=1

1

n2 + 1
,

∞∑
n=1

(−1)n−1

n2 + 1
,

∞∑
n=1

1

(n2 + 1)2
.

(c) What may we deduce for the function g, 2π periodic, such that g(x) = sinhx for

x ∈ [−π, π]?

5. Let x ∈]0,
π

2
]. We define the continuous function fx, 2π periodic on IR, even and linear

by pieces, by fx(0) = 1 and fx|[2x,π] = 0.

(a) Compute the Fourier series of fx.

(b) Deduce the sum of the following series:

∞∑
k=1

sin2 kx

k2
,

∞∑
k=1

sin4 kx

k4
.

6. Show that for all x ∈]0, 2π[, we have

π

8
(π − x) =

∞∑
n=0

cos(n+ 1
2) x

(2n+ 1)2
.

7. Show that | sinx |= 8

π

∞∑
n=1

sin2 nx

4n2 − 1
.

8. Compute the Fourier series of the 2π periodic function f defined for x ∈ [0, 2π[ by

f(x) = eax, a being a fixed real number.

Deduce the sum of the series

∞∑
n=1

1

n2 + a2
.

9. Compute the Fourier series of the odd and 2π periodic function f such that f(x) =

x(π − x) sur [0, π]. Deduce the sum of the following series

∞∑
n=0

(−1)n

(2n+ 1)3
,

∞∑
n=0

1

(2n+ 1)6
.

10. Compute the Fourier series of the 2π periodic functon f such that

f(x) = 0 if − π < x < 0, f(x) = x2 if 0 < x < π

Deduce the sum of the following series

∞∑
n=1

1

n2
,

∞∑
n=1

(−1)n

n2
.


