Chapter 4
Fourier series

General idea: represent a complicated function as a sum of very simple functions.

Here we take as simple functions: cos and sin.

4.1 Approximation by infinite sums

Let f : [a,b] — IR be given. We want to replace f by a more simple function.

For any integer n > 0, let be given functions ¢, : [a,b] — IR. These functions are supposed
to be simpler than f. In practise, these functions are polynomials, or linear combinations of
cos and sin type functions.

We then want to approximate f by a finite linear combination of these functions ¢;. That is,

we want to approximate f by a sum sy, where N is an intgeer, with

N
sn(z) = cii(x)
i=1
The coefficients ¢; should be in fact found such that this sum sy will be close to f. The

meaning of ”close” will be detailed below. The most simple way is given by

Définition 4.1.1 Let be given coefficients ¢; and fonctions ¢; : [a,b] — IR for all integer i.
We say that the series Zn21 Cnn converges simply towards the function f if for any x € [a, b]
fized, the numerical series y , <, cndn(x) converges and has a sum equal to f(z). Thus, if we

set for any integer N and for all x € [a, b]

N
SN(x) = Z Cn(bn(w)
n=1
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we should have
li =
i sn(z) = f(z)
In that case, we shall write ::3 Cndn = f.

Another convergence is given by quadratic (mean) convergence

Définition 4.1.2 With the same notations, we say that the series ) -, cp¢p converges

quadratically towards the function f if we have

b
lim / | £() — sw(a) 2 dz = 0

N—+o0 /g,

Définition 4.1.3 Let ¢ et 1) be two functions [a,b] — IR. We say that they are orthogonal

[ o=

For example: a =1, b=—-1,¢Y =1et ¢ = x.

if we have

Définition 4.1.4 Let be given for all integer n, a function ¢y, : [a,b] — IR. We say that they

are orthogonal if for all different integers n and m, we have

b
/ O () (x)dx =0

We also say that the sequence {¢y} is orthogonal

Now, our goal is to find the coefficients ¢, such that the series ), - ¢, converges quadrat-

ically towards f, with the assumption that the sequence {¢,} is orthogonal. Starting from

b
/ | f(@) - (@) P de

we expand to get

/|f chSn |2dx—/fr :U—Qch/ fgbndas+z /qbd:v

The r.h.s can be written as

Z/%{n_fqun /f2 ff¢n

a n=1 f¢2

Here we need to assume that b

/ @2 (x)dx # 0 for all n
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The coefficients ¢, only appear in the first term. As it is a sum of squares (positive), if we
want this to be very small, it is enough to choose ¢,, such that this term is zero. That is we

make the choice

b
Ju fn
Cpr —
n fb ¢2
a n
Définition 4.1.5 With the previous assumptions, set
b
Ju Tn
Cp = “——
n fb ¢2
a n

Then these coefficients are called the Fourier coefficients of f wr.t. the orthogonal sequence

{on}. We then say that the series Y, -, cndp is the Fourier series of f w.r.t. the sequence

{on}-

We use the notation

fl@) =" cntn

n>1
to say that the series on the r.h.s. is the Fourier series of f.

Caution: we do not know if this series converges, simply or quadratically.

4.2 Completion

We have seen that

b N b N b
[ 1@ =Y cwtnte) Pao= [ Plaide =322 [ o
a n=1 a n=1 a

We then deduce

Proposition 4.2.1 Bessel inequality. With the previous assumptions, let ¢, be the Fourier

coefficients of f w.r.t. the orthogonal sequence {¢,}. Then we have the inequality

N b b
ci qbi(x)dx < f2(as)dx
oah [ i< |

In fact we can even deduce that

Proposition 4.2.2 Generalized Bessel inequality. With the same assumptions, the numeri-

L : b . :
cal and positive series ), <, 2 [ 2 (x)dx converges and moreover its sum satisfies

+00 b b
[ dn(x)de < | fA(x)d
7;c/a x)dz /a x)dz
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Remember that we should also have
b
C?L/ $2(x)dz — 0 when n — 400
a
Finally we have

Proposition 4.2.3 If the Fourier series of f w.r.t. the orthogonal sequence {¢y} converges

quadratically towards f, then we have

b +00 b
[ Pwi=>a [
a n=1 a
The opposite is also true.

This is Parseval equality.

4.3 Classical Fourier series
We choose the interval (—m, ) and functions ¢y:
1, ,cosx,sinx, cos2x,sin 2z, . ..

These functions are continuous by pieces and their squares are integrable. Moreover we have

™
/ 12dx = 27
—T

™ ™
/cos2nacdx:/ sin?nade =m,n=1,2,...

Let us set
1 ™
an = — f(t)cosntdt,n =0,1,...
™ —T
1 ™
by, = — f(t)sinntdt,n =1, ...
a —Tr

Then the Fourier series of f is given by

1
fx) ~ §a0+a1 cosT + by sinx + as cos 2x + by sin 2z + . . .

~

ag + E an cos nx + b, sinnx
n>1

N | =
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Définition 4.3.1 Let f be continuous by pieces and square integrable. Then its Fourier
coefficients are the numbers

s
an = — f(t)cosntdt,n =0,1,...
™ —T

1 s
by, = — ft)sinntdt,n =1, ...
m —T

The Fourier series of f is:

1 .
f(z) ~ 540 + Z an COSNT + by sinnx
n>1
One can check that for all distinct n and m, we have fjﬂ cosnx sinmzdr = 0 (orthogonality.
Here are some sufficient conditions to check the simple convergence of the Fourier series

towards f.

Proposition 4.3.1 The Fourier series of f at a given x converges towards f(z), that is we
have the equality
f(z) = Z ap cosnx + by, sinnx

n>1
under one of the following conditions:
1) f is continuous by pieces and integrable and that f is derivable at x fixé.

2) f is Lipschitz of order o at x that is there exists two constants M and « such that

| fly) = f(x) [ M |y—=x|* forallye (—m,n)

Caution: it may appear that if f is only continuous at x, then its Fourier series diverges at
x.

Assume now that f is discontinuous at & but have limits f(x + 0) and f(x — 0).

Proposition 4.3.2 Assume one of the following conditions at a fized point x:

1) f is continuous by pieces and integrable and derivable around a small interval cetered
at x and that this derivative is bounded there (maybe except at x).

2) f is continuous by pieces and integrable and Holder at z, that is there exists two positive

constants M and o such that

| f(x) = fy) IS M|y —x|* Yy [-n,7]

Then we have

, 1
i s (@) = 5 [f(z +0) + fz —0)]

that is the Fourier series of f at x converges to the mean 3[f(z + 0) + f(z — 0)].
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4.4 Other types of convergence

Définition 4.4.1 We say that the Fourier series of f converges uniformly towards a function
g if for all fized € f(the error), we can choose N such that | f(x) — sn(z) |< €, and this for

all x.

Caution: Uniform convergence towards g = f implies simple convergence (but the opposite
is not true).

If f is discontinuous (with a jump) at a given point, there cannot be uniform convergence of
its Fourier series.

In fact we have

Proposition 4.4.1 If a Fourier series of a function f converges uniformly towards f, then
necessarily this function f should be continous and should satisfy , that is f should be 2w

periodic.

Proposition 4.4.2 Let f be a continuous and 2w periodic function. Assume that f is deriv-
able over [—m, 71| out of a finite number of points. Assume that out these points, this derivative

is continuous and that the integral fjﬂ fIQ(J:)da: converges. Then we have

N |
S

o
+ Z(an cos nx + by, sinnx)
1

et

[e.e]

f'(z) ~ Z(nbn COS NT — Nay, SIN NT)
1

Théoreme 4.4.1 Let f be a continuous function, 2w-periodic and such that ffﬁ f2dz s

finite. Then its Fourier series convers uniformly towards f.

Exemple 4.4.1 Let f(x) =| x| for all x € [—m, 7] and 2w-periodic. Then we have

cos(2k — 1)z
fl _*_*Z (2k — 1)2

Note that
fllz)=-14f —n<x<0and =1if0<z<m

and thus [ is discontinuous at a finite number of points in [—m;7]. Note that f’ is not defined
at 0. Finally [" f2da is finite.



4.4. OTHER TYPES OF CONVERGENCE

Proposition 4.4.3 If the Fourier series of a function f converges uniformly towards f, the

1$ also converges quadratically.

In fact we have also

Proposition 4.4.4 Let f be a continous by pieces function on [—m;w|, 2mr— periodic and

such that ffﬂ f?dx is finite. Then its Fourier series converges quadratically towards f.

We have also Parseval relation

Proposition 4.4.5 Let f and f* two continuous by pieces functions with ffﬂ f?(x)dr < +o0

and ffﬂ *%(z)dx < 4+o00. Then if

1 oo
f(x) ~ 540 + Z[an cos nx + by, sinnx),
1

1 [ee]
[ (z) ~ 5“8 + Z[az cos nx + b} sinnx|,
1

we have the Pareseval equality

@) @) = n(a0ah + 3 (andl + bub)

Exemple 4.4.2 Let us take the 2m periodic functions defined on [—m, | by

fa) = et f(x) = a°

Firstly we have the Fourier expansions

fx) ~ —22 (=1)" sin nz
1

n

N
fH(z) = _QZ(; - E)(—l)n sinnx
1

Using Parseval equality, we deduce that

21° T, =1, ., 6

™ 1

Then, let us note that if f is continuous and 27 periodic, with ff’2d3: < 00, then we can

apply Parseval inequlity to f' to get

o0 1 T
an(a% +b2) == fdx
77
1

—T
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We deduce that for all M,

00 1 T M
donPah+bh) == [ fPdz—> n’(a)+b))
M+1 TJ—r 1
If we apply Parseval inequality to f(x) = x, we get
Y-

- nz2 6
Letting N — 400 in the above equality linking the difference between sy and spr, we obtain

an error made if we approzimate f by its Fourier partial sum sps

M
2 1
- n?

| f(z) = sm(z )\<{ f’de Zn a? +b2)}2{ E

\ =

2

Exemple 4.4.3 Let f(x) =| x| on [—m,7|. Then

i f*(z)dx = 27

—Tr

:7_7ZC082]€—1

Taking M = 2, we get (note that ag = by =0)
4 16 2 1
la|~[5 — —cosal|< {2 - Sy —1-

In fact, the mazimum is obtained at x = 0 and at x = Fm, and is equal to 0.30.

}2 = 0.39

4.5 Cosinus and Sinus series

If f is an odd function, then all coefficients a,, are zero. In that case, we have

o
x) ~ g by, sin nx
1

and moreover
2 T
= / f(x)sinnxdz
™ Jo

If f is an even function, then all coefficients b,, are zero. In that case, we have

a oo

0 .

x) o~ ?—i- E ap, sin nx
1

2 ™
= / f(z) sinnxdx
T Jo

and moreover
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4.6 Change of scales

We have seen that the sequence {cosnx,sinnz} was orthogonal over the interval [—m,].
This fact is well adapted for the decomposition of functions defined on this interval or even
on half of this interval if we take into consideration the parity of this function.

We can in fact proceed similarly for functions defined over an arbitrary interval [a,b]. For
this purpose, let us introduce the new variable

2m(x — %(a +b))
b—a

T =

for any = € [a,b]. This new coordinate Z sends x € [a,b] on Z € [—m, 7]. Also, one can check
that

b—a_ 1
o x+§(a+b)

The interest of this new variable is that we are back to the interval [—7,7]. Now for any

€Tr =

variable Z in [—, 7], introduce the function F' defined on [—, 7] by

a_ 1
o 3:—|—§(a+b))

Note that F(z) = f(z). The function F' is well defined over [—m, 7], and we may consider its

usual Fourier series

1 o0
F(z) ~ 5 + Z(an cosnT + by, sinnz)
1
where
1 s
an = / F(z) cos nzdz
™ —T
1 ™
by, = — / F(z)sinnzdz
™ —T

This Fourier series converges quadratically towards F' if f F(z)%dz is finite, uniformly if F
is continuous, 27 periodic and f,,r F2dz is finite.

Now if we remember the link between the variables x and Z, we find that

1

S+ ),

[\DM—A

- 1 2
Zancos (x — =(a+10b)) + by sin m (x —
- 2 b—a

with

b
an = /a f(z) cos bQir; (x — 1(a +b))dx

b—a 2

2_2 (x — %(a +b))dx
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Note that the family {cos 222(z — %(a + b)),sin 2% (z — 4(a + b))} is orthogonal over the
interval [a, b].

We see immediately that this Fourier series converges quadratically towards f if ff f(x)?dz
is finite, and uniformly if f is continuous, with f(a) = f(b) and f; f?(x)dx is finite. All
convergence theorems above remain true here. Similarly, according to the parity of f, we

may expand f in Sin series

with
9 b
bn:b—a ) (z)sin -——(x — a)dz
or in Cos series
1 o
f(z) ~ 5 —i—;ancos _a(ac —a)
with X
2 ™
an_ba/a f(x)cosbia(x—a)dx

4.7 Fourier series with multi variables

Let us deals to simplify with the 2d case.

More precisely, consider a function f : IR?> — IR, the variables here being the couple
(z,y) € R? and we assume that f is C' over IR? and 27 periodic w.r.t. each of these
variables that is

fla+2my) = f(z,y+2m) = f(z,y)
for all (z,y) € IR?. In particular, if we know f over a square (with sides parallel to the
coordinate axis) of length 27. In practise, we’ll take the square [—7, 7] x [—m, 7].
Let us fix the variable y for example. Then we may consider the function f as a function
of the single variable x. Then its Fourier series (w.r.t. variable x) is uniformly convergent

(towards f(z,y)) that is we have

1 o
flz,y) = 5% + Z[an cos nx + by, sin n]
1

and this holds for all x € IR.
In fact, as we have fixed the variable x, coefficients a,, and b,, also depend on y and thus we

have

F(,9) = Ja0(y) + D fan(y) cosnz + bu(y) sinna]
1
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Thus coefficients a,, and b, are also function of variable y and are given by

1 ™
anly) == [ f(z,y) cosneds

-7

bn(y) = L f(z,y) sinnxdx
™ —T
Then for all n, we have
1 o0
an(y) = Eano + Z(anm cos my ~+ bpm sinmy)
1

1 > ,
bn(y) = icn(] + Z(cnm cos my + dpm, Sinmy)
1

with
1 s ™
Unm = —5 / f(x,y) cos nx cos mydxdy
™ JrJ—m

1 ™ ™
bnm = — / f(z,y) cos nx sin mydxdy
™ J-rJ—rx

1 ™ ™
Cnm = —5 / f(z,y) sin na cos mydxdy
™ J-xJ—rx

1

s s
dnm = — / f(x,y) sinnx sin mydzdy
™ JrJ-m

On the whole, we get

1 o
[@gm cos my + by, sin my| + 5 Z[ano COS NI + Cpp Sin nx)+
1 n=1

1

f(za y) = ZGOO +

1 o0
2

m=
o0 o

+ g g A COS NI COS MY + by, COSNE SIN MY + Cpyy, SIN NT COS MY + Ay, SN NT SID NY]

n=1m=1

Using Parseval equality, we get
T T S
flay)Pde = Sao()* + 7Y _lan(y)® + bn(y)?]
- n=1
and integrating, we get
s s 5 7_(.2 ™ 9 9 s 5 9
[ [ tewpasty =" [ aiy+n [ lak+ t2lay
—T —T —T —T
We have also

T 00

s

/ an(y)2dy = EaiO +m zzl(a?mm + bim)
m=
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m=1
In conclusion, we get
s T ) 7.[.2 9 7r2 e 9 5
/ f(x,y) dzdy = 7 %0 T o Z(ano + Cno)+
—T —T

n=1

o0 o0
72D N (ah, + i + o+ d2y)

n=1m=1
This is called the Pareseval equality and it holds true for function continuous by pieces and
such that [*[" f(x,y)?dzdy est finie.

4.8 Exercices of this Chapter

1. Let f: IR — IR, odd, 27 periodic, given by
. T T

(a) Check that f is continuous by pieces and compute its Fourier coefficients.
(b) Study the convergence of its Fourier series.

(c) Deduce the sum of the following series:

> 1 =1 > 1 =1
p;) (2p+1)%’ ;n? pZ::O 2p+ 1) 7;714'

2. Give the Fourier series of f, 27 periodic f(z) = 22 sur | — m; +7]. Deduce the sum of

the following two series:

00 _1)» 00 1
PR

2
n
n=1 n=1

3. Compute the Fourier series of f, 27 periodic such that f(x) = 22 — 72 on | — 7; +7].

= 1
Compute Zl v
4. Letf : R — R, 27 periodic, defined for x € [—m, 7] by f(z) = coshz.

(a) Compute its Fourier series
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(b) Deduce the sum of the following series

=1 2 (=1t > 1
Zn2+1’ Z 2+1’ Z(n2+1)2
n=1 n=1 n=1

(¢c) What may we deduce for the function g, 27 periodic, such that g(x) = sinhz for

x € [—m,m|?

5. Let x €]0, g] We define the continuous function f,, 27 periodic on IR, even and linear
by pieces, by f2(0) =1 and fz25,,] = 0.

(a) Compute the Fourier series of f,.

(b) Deduce the sum of the following series:

oo . D .
sin? kz sin® kx
D Dt
k=1 k=1

6. Show that for all z €]0,2x[, we have

00 1
T B cos(n+3) T
gr—a) =2 @n+1)2
. 8 = sin’nz
7. Show that |sinz |= — Z R
T n? —

n=1
8. Compute the Fourier series of the 27 periodic function f defined for x € [0,2n] by
f(z) = e*®, a being a fixed real number.

1

oo
Deduce the sum of the series —_
nz:l n2 + a2

9. Compute the Fourier series of the odd and 27 periodic function f such that f(z) =

x(m — x) sur [0, 7]. Deduce the sum of the following series

nZ:O(Zn—i—l)?)’ nzz:o(%L—}—l)ﬁ'

10. Compute the Fourier series of the 27 periodic functon f such that
f@)=0if —r<x<0, f(z) =22 if0<z<m

Deduce the sum of the following series

1 = (—=1)"
Zﬁ’ Z(n2)'

n=1 n=1




