
Introduction to Algorithms and Data Structures

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi

ICT department

September 4, 2024

Doan Nhat Quang Introduction to Algorithms and Data Structures 1 / 55

Objectives

Course objectives:

▶ Provide basic knowledge about algorithms and data structures.

▶ Be able to choose appropriate data structures for a specific
problem.

▶ Approach different algorithms and solve a problem in
informatics.

Doan Nhat Quang Introduction to Algorithms and Data Structures 2 / 55

Objectives

Why study Algorithms?
▶ Many problems can be solved by using a computer

▶ want it to go faster? Process more data?
▶ want it to do something that would otherwise be impossible?

▶ Technology improves many aspects but
▶ it might be costly
▶ good algorithmic design can do much better and might be

cheaper
▶ super-computers cannot handle a bad algorithm

Doan Nhat Quang Introduction to Algorithms and Data Structures 3 / 55

Objectives

Why study Data structure?

▶ Data structure can make the algorithms much simpler, easier
to maintain, and often faster

Doan Nhat Quang Introduction to Algorithms and Data Structures 4 / 55

Objectives

Basic algorithms

▶ How to search a number or a string of characters in the
Google Search engine?
→ Solution: searching algorithms, indexing or sorting
algorithms

▶ How to optimize the service algorithm for one or more
elevator(s)?
→ Solution: scheduling algorithms, optimization algorithms

▶ How to maintain the products in store?
→ Solution: algorithms using the data structure: queue

Doan Nhat Quang Introduction to Algorithms and Data Structures 5 / 55

Objectives

Advanced algorithms

▶ How to find people with the same interest?

▶ How to search an image or a video in Google Search engine?

▶ The traveling salesman problem (Shortest Paths): ”Given a
list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and
returns to the origin city?”

▶ Job scheduling: assign different tasks at particular times with
various constraints.

▶ How to determine the best move for chess/go?

▶ and more

Doan Nhat Quang Introduction to Algorithms and Data Structures 6 / 55

Real-world Applications

PageRank

▶ PageRank (PR) is an algorithm used by Google Search to
rank websites in their search engine results. PageRank is a
way of measuring the importance of website pages.

▶ How do you search a website in multiple servers?

▶ Data structures: Graph

Doan Nhat Quang Introduction to Algorithms and Data Structures 7 / 55

Real-world Applications

Travelling paths

▶ Finding the shortest paths is always practiced for real-time
use.

▶ System: www.maps.google.com / www.ratp.fr

▶ Data structure: List of available vehicles, road network
(graph)

Doan Nhat Quang Introduction to Algorithms and Data Structures 8 / 55

Real-world Applications

Spelling and Auto-complete

▶ Data structure: Trie (a tree structure)

▶ Dictionnary: words are represented in a tree structure

Doan Nhat Quang Introduction to Algorithms and Data Structures 9 / 55

Real-world Applications

Data Visualization

▶ Algorithms for visualization

▶ D3JS, GraphViz, PowerBI, etc.

Doan Nhat Quang Introduction to Algorithms and Data Structures 10 / 55

From Algorithms to Artificial Intelligence and Machine
Learning

▶ Algorithms are the theory/core concepts of AI and Machine
Learning

▶ Applications are widely large:
▶ Banking: Fraud detection, Stock market analysis
▶ Business: Online customer support, Virtual personal assistants
▶ Health: Medical diagnosis, Medical image processing
▶ Transport: Intelligent/smart vehicles, Transport optimization
▶ etc.

Doan Nhat Quang Introduction to Algorithms and Data Structures 11 / 55

How do we use data structures with programming
langangues?

▶ Algorithms must be implemented with one programming
language.

▶ How many programming languages?
→ 500-700 programming languages excluding HTML, SQL,
XML.

▶ Programming languages have syntax, libraries, functions,
variables (more general data structures).

▶ Not all programming languages provide (pre-defined) data
structures.
→ Users need to define their own data structures.

▶ Many data structures exist in litterature, we need to become
proficient in understanding common data structures.

Doan Nhat Quang Introduction to Algorithms and Data Structures 12 / 55

How do we use data structures with programming
langangues?

User-defined data structures:

▶ More secure and confidential.

▶ Can be flexible and reusable for other problems.

Doan Nhat Quang Introduction to Algorithms and Data Structures 13 / 55

Do you have data structures in other languages?

YES, main data structures

▶ C++: Lists, Stacks, Queues, Tree, Heap, Hashing, Graph.

▶ Python: Lists (Stack, Queue), Tuples and Sequences, Sets,
Dictionaries.

Many data structures are integrated in each programming
language.

Doan Nhat Quang Introduction to Algorithms and Data Structures 14 / 55

Why should we learn data structure using C?

▶ C is a basic programming language.

▶ C doesn’t have any in-built data structures, except arrays.

Once we are familiar with data structures in C, we can implement
them in any programming language.

YOU CANNOT USE BUILT-IN DATA STRUCTURES IN C/C++
FOR EXERCISE AND EXAM.

Doan Nhat Quang Introduction to Algorithms and Data Structures 15 / 55

Textbooks

Recommended Textbook: Data Structures and Algorithms in C++
4th edition, Adam Drozdek

Doan Nhat Quang Introduction to Algorithms and Data Structures 16 / 55

Development Tools

▶ Dev-C++: a free, portable, fast, and simple C/C++ IDE

▶ Visual C++ Express: a free set of tools

▶ Online: http://cpp.sh/ for simple programs

Doan Nhat Quang Introduction to Algorithms and Data Structures 17 / 55

Example

Suppose that a sequence of a1, a2, ... an (n ≥ 2) is available, find
the maximum?

1 Step 1: Given that Max = a1
and the index i = 2,

2 Step 2: If i > n then go to
Step 6

3 Step 3: If ai > Max then
Max = ai

4 Step 4: Increment index i

5 Step 5: Go to Step 2

6 Step 6: Return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 18 / 55

Example

Suppose that a sequence of a1, a2, ... an (n ≥ 2) is available, find
the maximum?

1 Step 1: Given that Max = a1
and the index i = 2,

2 Step 2: If i > n then go to
Step 6

3 Step 3: If ai > Max then
Max = ai

4 Step 4: Increment index i

5 Step 5: Go to Step 2

6 Step 6: Return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 18 / 55

Example

Suppose that a sequence of a1, a2, ... an (n ≥ 2) is available, find
the maximum?

1 Step 1: Given that Max = a1
and the index i = 2,

2 Step 2: If i > n then go to
Step 6

3 Step 3: If ai > Max then
Max = ai

4 Step 4: Increment index i

5 Step 5: Go to Step 2

6 Step 6: Return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 18 / 55

Example

Suppose that a sequence of a1, a2, ... an (n ≥ 2) is available, find
the maximum?

1 Step 1: Given that Max = a1
and the index i = 2,

2 Step 2: If i > n then go to
Step 6

3 Step 3: If ai > Max then
Max = ai

4 Step 4: Increment index i

5 Step 5: Go to Step 2

6 Step 6: Return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 18 / 55

Example

Suppose that a sequence of a1, a2, ... an (n ≥ 2) is available, find
the maximum?

1 Step 1: Given that Max = a1
and the index i = 2,

2 Step 2: If i > n then go to
Step 6

3 Step 3: If ai > Max then
Max = ai

4 Step 4: Increment index i

5 Step 5: Go to Step 2

6 Step 6: Return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 18 / 55

Example

Suppose that a sequence of a1, a2, ... an (n ≥ 2) is available, find
the maximum?

1 Step 1: Given that Max = a1
and the index i = 2,

2 Step 2: If i > n then go to
Step 6

3 Step 3: If ai > Max then
Max = ai

4 Step 4: Increment index i

5 Step 5: Go to Step 2

6 Step 6: Return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 18 / 55

Example

Suppose that a sequence of a1, a2, ... an (n ≥ 2) is available, find
the maximum?

1 Step 1: Given that Max = a1
and the index i = 2,

2 Step 2: If i > n then go to
Step 6

3 Step 3: If ai > Max then
Max = ai

4 Step 4: Increment index i

5 Step 5: Go to Step 2

6 Step 6: Return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 18 / 55

Example

Suppose that a sequence of a1, a2, ... an (n ≥ 2) is available, find
the maximum?

1 Step 1: Given that Max = a1
and the index i = 2,

2 Step 2: If i > n then go to
Step 6

3 Step 3: If ai > Max then
Max = ai

4 Step 4: Increment index i

5 Step 5: Go to Step 2

6 Step 6: Return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 18 / 55

Example

Strategy to solve a problem:

Doan Nhat Quang Introduction to Algorithms and Data Structures 19 / 55

Algorithms

Concept

From the original problem, we have to :

▶ identify the needs, the ideas of the problem

▶ find an approach, an appropriate algorithm to solve the
problem

Data Structure

In this course, we will study basic structures:

▶ Arrays, Pointers

▶ Linked Lists, Stacks, Queues

▶ Tree, Binary Tree

Doan Nhat Quang Introduction to Algorithms and Data Structures 20 / 55

Data structure applications

Data Structure

▶ List of items in the cart when you visit an online shop

▶ List of possible actions (undo/redo) in a word editor

▶ Bitmap (array 2D) to store image pixels

▶ Graph to represent a group of persons and their relationship
(Graph Theory, Graph Mining)

▶ Tree to arrange and index data like web pages, images, etc.

Doan Nhat Quang Introduction to Algorithms and Data Structures 21 / 55

Definition

Computer program

A computer program is a collection of instructions a computer
can execute to perform a specific task.

Algorithm

An algorithm is a finite sequence of well-defined instructions to
solve a specific problem or to perform a computation.

▶ 3 constructs of algorithm: Input → Process → Output.

Data structure

A data structure is a data organization, management, and storage
format that enables efficient access and computation.

Doan Nhat Quang Introduction to Algorithms and Data Structures 22 / 55

Definition

Computer program

A computer program is a collection of instructions a computer
can execute to perform a specific task.

Algorithm

An algorithm is a finite sequence of well-defined instructions to
solve a specific problem or to perform a computation.

▶ 3 constructs of algorithm: Input → Process → Output.

Data structure

A data structure is a data organization, management, and storage
format that enables efficient access and computation.

Doan Nhat Quang Introduction to Algorithms and Data Structures 22 / 55

Definition

Computer program

A computer program is a collection of instructions a computer
can execute to perform a specific task.

Algorithm

An algorithm is a finite sequence of well-defined instructions to
solve a specific problem or to perform a computation.

▶ 3 constructs of algorithm: Input → Process → Output.

Data structure

A data structure is a data organization, management, and storage
format that enables efficient access and computation.

Doan Nhat Quang Introduction to Algorithms and Data Structures 22 / 55

Definition

Algorithm vs Program

▶ A program can implement one or more algorithms;

▶ A program, there is always the idea that a computer will
execute it while a person could execute an algorithm;

▶ A program is written in a programming language, while an
algorithm is conceptual and can be described using language
(including programming languages), flowcharts or pseudocode.

Program = Algorithm + Data structure.

Doan Nhat Quang Introduction to Algorithms and Data Structures 23 / 55

Algorithm Representation

Flowcharts

Flowcharts are used in designing and documenting simple processes
or programs. Flowcharts help visualize and understand a process

Doan Nhat Quang Introduction to Algorithms and Data Structures 24 / 55

Algorithm Representation

Pseudo-code

▶ Pseudo-code is a high-level description

▶ Pseudo-code is concrete and easy for human comprehension

▶ Pseudo-code is usually used to describe algorithms

Syntax

▶ Control flow:
▶ if then.... (if else....)
▶ while (...) ... do
▶ repeat until (...)
▶ for do...

▶ Method declaration
▶ Input
▶ Output

findMax (a)

1: Max = a1
2: for i = 2 → n do
3: if ai > Max then
4: Max = ai
5: end if
6: end for
7: return Max

Doan Nhat Quang Introduction to Algorithms and Data Structures 25 / 55

Algorithm design approaches

▶ Top-down approach emphasizes breaking down or dividing an
algorithm into smaller modules (or functions). Each function
is refined in more detail, probably in many additional levels,
until they are no longer split.

▶ Bottom-up approach begins with the lowest-level functions of
the algorithm, which are first specified in detail. These
elements are then formed to create larger modules until a
complete top-level system is formed.

Doan Nhat Quang Introduction to Algorithms and Data Structures 26 / 55

Algorithms and approaches

A good algorithm must possess the following properties:

▶ Correctness: An algorithm may or may not have input. An
algorithm has one or more outputs available when it
terminates, which have a specific relation to the inputs. An
algorithm must be correct if it takes the right input and
produces the desired output.

▶ Finiteness: An algorithm must permanently terminate after a
finite number of steps. Infinite loops should be avoided at all
costs.

Doan Nhat Quang Introduction to Algorithms and Data Structures 27 / 55

Algorithms and approaches

A good algorithm must possess the following properties:

▶ Definiteness: Each instruction must be precisely concrete and
unambiguous. Each instruction must also be realized in a
finite amount of time.

▶ Efficiency: An algorithm is always optimized to have low
running time and low memory allocation as possible. A good
algorithm should be concise and easy to understand and
implement. Complexity, a theoretical measure, computes
algorithmic complications. A well-optimized algorithm has low
complexity.

Doan Nhat Quang Introduction to Algorithms and Data Structures 28 / 55

Algorithm categories

▶ Simple recursive algorithms

▶ Divide and conquer algorithms

▶ Dynamic programming algorithms

▶ Greedy algorithms

▶ Backtracking algorithms

▶ Randomized algorithms

Doan Nhat Quang Introduction to Algorithms and Data Structures 29 / 55

Recursive Algorithms

A simple recursive algorithm:

▶ convert the main problem to sub-problems

▶ solve the base cases directly

▶ recur with a simpler sub-problem

Doan Nhat Quang Introduction to Algorithms and Data Structures 30 / 55

Recursive Algorithms

A simple recursive algorithm:

▶ convert the main problem to sub-problems

▶ solve the base cases directly

▶ recur with a simpler sub-problem

Doan Nhat Quang Introduction to Algorithms and Data Structures 30 / 55

Recursive Algorithms

The picture shows that the solu-
tion computes solutions to the sub-
problems more than once for no
reason:

7 6 5 4 3 2 1 0
1 1 2 3 5 8 13 21

→ Complexity is exponential,
O(2n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 31 / 55

Recursive Algorithms

For Hanoi Tower problem, moving plates are done recursively. We
suppose that n-1-plate problem is done then we solve n-plate
problem

Doan Nhat Quang Introduction to Algorithms and Data Structures 32 / 55

Divide and Conquer Algorithms

A divide and conquer algorithm:

▶ given a problem to be solved, split this into several smaller
sub-problems.

▶ solve each of them recursively and then combine the
sub-problem solutions so as to product a solution for the
original problem.

Traditionally, an algorithm is “divide and conquer” if it contains at
least two recursive calls

Doan Nhat Quang Introduction to Algorithms and Data Structures 33 / 55

Divide and Conquer Algorithms

A divide and conquer algorithm:

▶ given a problem to be solved, split this into several smaller
sub-problems.

▶ solve each of them recursively and then combine the
sub-problem solutions so as to product a solution for the
original problem.

Traditionally, an algorithm is “divide and conquer” if it contains at
least two recursive calls

Doan Nhat Quang Introduction to Algorithms and Data Structures 33 / 55

Divide and Conquer Algorithms

Example: Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, ...

1 i n t f i b o (n){
2 i f ((n == 0) | | (n == 1))
3 r e t u r n n ;
4 r e t u r n f i b o (n=1) + f i b o (n=2);
5 }

Doan Nhat Quang Introduction to Algorithms and Data Structures 34 / 55

Divide and Conquer Algorithms

▶ Quicksort:
▶ Partition the array into two parts (smaller numbers in one part,

larger numbers in the other part)
▶ Quicksort each of the parts

▶ Mergesort:
▶ Cut the array in half and mergesort each half
▶ Combine the two sorted arrays into a single sorted array by

merging them

Doan Nhat Quang Introduction to Algorithms and Data Structures 35 / 55

Dynamic Programming

A dynamic programming algorithm remembers past results and
uses them to find new results:

▶ cut the main problem into a set of simpler sub-problems

▶ solve each sub-problems just once and store their solutions
which can be used later.

This differs from Divide and Conquer, where sub-problems
generally need not overlap.

Doan Nhat Quang Introduction to Algorithms and Data Structures 36 / 55

Dynamic Programming

Example: Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, ...

1 i n t f i b o (n){
2 i f ((n == 0) | | (n == 1))
3 r e t u r n n ;
4 i f f i b o (n) != 0
5 r e t u r n f i b o (n) ;
6 r e t u r n f i b o (n=1) + f i b o (n=2);
7 }

Since finding the i th Fibonacci number involves finding all smaller
Fibonacci numbers already calculated, the second recursive call has
little work to do.

Doan Nhat Quang Introduction to Algorithms and Data Structures 37 / 55

Greedy Algorithm

A greedy algorithm is an algorithm that follows the
problem-solving heuristic:

▶ take the best that we can get right now, without regard for
future consequences.

▶ choose a local optimum at each step to find a global optimum.

Greedy algorithms sometimes work well for optimization problems.

Doan Nhat Quang Introduction to Algorithms and Data Structures 38 / 55

Greedy Algorithm

Example: Suppose you want to count out a certain amount of
money, using the fewest possible bills and coins. A greedy
algorithm would do this would be:

▶ At each step, take the largest possible bill or coin that does
not overshoot.

▶ To make 151,000 VND, how many bills, as few as possible?
which should be the best solution?:

▶ a 100,000 VND bill
▶ a 50,000 VND bill
▶ a 1,000 VND bill

Doan Nhat Quang Introduction to Algorithms and Data Structures 39 / 55

Greedy Algorithm

Example: Suppose you want to count out a certain amount of
money, using the fewest possible bills and coins. A greedy
algorithm would do this would be:

▶ At each step, take the largest possible bill or coin that does
not overshoot.

▶ To make 151,000 VND, how many bills, as few as possible?
which should be the best solution?:
▶ a 100,000 VND bill
▶ a 50,000 VND bill
▶ a 1,000 VND bill

Doan Nhat Quang Introduction to Algorithms and Data Structures 39 / 55

Greedy Algorithm

Example: Suppose that in a certain currency system, we have 1p,
7p and 10p pieces.

▶ Using a greedy algorithm to count out 15p, you would get:
▶ A 10p piece
▶ Five 1p pieces, for a total of 15p
▶ This requires six pieces

▶ A better solution would be to use:
▶ Two 7p pieces and one 1p piece
▶ This only requires three pieces

Doan Nhat Quang Introduction to Algorithms and Data Structures 40 / 55

Greedy Algorithm

Example: Suppose that in a certain currency system, we have 1p,
7p and 10p pieces.
▶ Using a greedy algorithm to count out 15p, you would get:

▶ A 10p piece
▶ Five 1p pieces, for a total of 15p
▶ This requires six pieces

▶ A better solution would be to use:
▶ Two 7p pieces and one 1p piece
▶ This only requires three pieces

Doan Nhat Quang Introduction to Algorithms and Data Structures 40 / 55

Greedy Algorithm

Label new data sample according to several data neighbors (k)

▶ Find k nearest neighbors of data sample

▶ Among these k data, if the number of data from any class is
more common, the data sample is assigned to this class.

Doan Nhat Quang Introduction to Algorithms and Data Structures 41 / 55

Backtracking Algorithm

A backtracking algorithm bases on recursion:

▶ starting with one possible move out of many available moves

▶ find next move from the starting point

▶ if this satisfies given constraints, continue next moves; else
return to previous move

Sometimes, backtracking algorithms don’t have solutions due to
constraints.

Doan Nhat Quang Introduction to Algorithms and Data Structures 42 / 55

Backtracking Algorithm

Doan Nhat Quang Introduction to Algorithms and Data Structures 43 / 55

Randomized Algorithms

A randomized algorithm is an algorithm that employs a degree of
randomness as part of its logic.

▶ In Quicksort, using a random number to choose a pivot

▶ In Machine Learning, some techniques are “randomized” such
as K-means, Self-organized Map, Random Forest, etc.

Doan Nhat Quang Introduction to Algorithms and Data Structures 44 / 55

Algorithm complexity

Complexity

A theoretical evaluation measures how good an algorithm is in
terms of running time and computational memory.

Assume that the running time of an algorithm is T (n) with n
objects.

▶ Big Θ: T (n) = Θ(f (n)) if ∃k1, k2, n0 ∈ N+, ∀n ≥ n0:
k1f (n) ≤ T (n) ≤ k2f (n)

▶ Big O: T (n) = O(f (n)) if ∃k , n0 ∈ N+, ∀n ≥ n0:
T (n) ≤ kf (n)

▶ Big Ω: T (n) = Ω(f (n)) if ∃k , n0 ∈ N+, ∀n ≥ n0:
T (n) ≥ kf (n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 45 / 55

Algorithm complexity

Big Θ notation, an asymptotically tight bound on the running
time, T (n) = Θ(f (n)) if ∃k1, k2, n0 ∈ N+, ∀n ≥ n0:
k1f (n) ≤ T (n) ≤ k2f (n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 46 / 55

Algorithm complexity

Big O notation, the asymptotic upper bounds of a running time,
T (n) = O(f (n)) if ∃k , n0 ∈ N+, ∀n ≥ n0: T (n) ≤ kf (n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 47 / 55

Algorithm complexity

Big Ω notation, the asymptotic lower bounds of a running time,
T (n) = Ω(f (n)) if ∃k, n0 ∈ N+, ∀n ≥ n0: T (n) ≥ kf (n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 48 / 55

Algorithm complexity

Step 1 if Max = a1 and i = 2, 1 operation → O(1)

Step 2 if i > n then go to Step 6

n-1 operations → O(n)
Step 3 If ai > a1 then Max = ai
Step 4 Increment i
Step 5 Go to Step 2
Step 6 Return Max 1 operation → O(1)

Complexity: O(n + 1 + 1) = O(n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 49 / 55

Algorithm complexity

Step 1 if Max = a1 and i = 2, 1 operation → O(1)
Step 2 if i > n then go to Step 6

n-1 operations → O(n)
Step 3 If ai > a1 then Max = ai
Step 4 Increment i
Step 5 Go to Step 2

Step 6 Return Max 1 operation → O(1)

Complexity: O(n + 1 + 1) = O(n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 49 / 55

Algorithm complexity

Step 1 if Max = a1 and i = 2, 1 operation → O(1)
Step 2 if i > n then go to Step 6

n-1 operations → O(n)
Step 3 If ai > a1 then Max = ai
Step 4 Increment i
Step 5 Go to Step 2
Step 6 Return Max 1 operation → O(1)

Complexity: O(n + 1 + 1) = O(n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 49 / 55

Algorithm complexity

Step 1 if Max = a1 and i = 2, 1 operation → O(1)
Step 2 if i > n then go to Step 6

n-1 operations → O(n)
Step 3 If ai > a1 then Max = ai
Step 4 Increment i
Step 5 Go to Step 2
Step 6 Return Max 1 operation → O(1)

Complexity: O(n + 1 + 1) = O(n)

Doan Nhat Quang Introduction to Algorithms and Data Structures 49 / 55

Algorithm complexity

Some examples:

▶ Any operation, statement, instruction: S1, ...,Sk → O(1)

▶ for{i = 1; i <= n; i ++}
{Si} → O(n)

▶ for{i = 1; i <= n; i ++}{
for{j = 1; j <= n; j ++}

{Si} → O(n2)

Doan Nhat Quang Introduction to Algorithms and Data Structures 50 / 55

Algorithm complexity

Some examples:

▶ Any operation, statement, instruction: S1, ...,Sk → O(1)

▶ for{i = 1; i <= n; i ++}
{Si} → O(n)

▶ for{i = 1; i <= n; i ++}{
for{j = 1; j <= n; j ++}

{Si} → O(n2)

Doan Nhat Quang Introduction to Algorithms and Data Structures 50 / 55

Algorithm complexity

Some examples:

▶ Any operation, statement, instruction: S1, ...,Sk → O(1)

▶ for{i = 1; i <= n; i ++}
{Si} → O(n)

▶ for{i = 1; i <= n; i ++}{
for{j = 1; j <= n; j ++}

{Si} → O(n2)

Doan Nhat Quang Introduction to Algorithms and Data Structures 50 / 55

Algorithm complexity

Some examples:

▶ Any operation, statement, instruction: S1, ...,Sk → O(1)

▶ for{i = 1; i <= n; i ++}
{Si} → O(n)

▶ for{i = 1; i <= n; i ++}{
for{j = 1; j <= n; j ++}

{Si} → O(n2)

Doan Nhat Quang Introduction to Algorithms and Data Structures 50 / 55

Algorithm complexity

Several properties for complexity computation:

▶ f (n) = O(h(n)) → nf (n) = O(nh(n))

▶ f (n) = O(h(n)) → kf (n) = O(h(n)) where k is a constant

▶ f (n) = O(h(n)) → g(n) = O(y(n)) → f (n)g(n) =
O(h(n)y(n))

▶ f (n) + g(n) = max(O(f (n)),O(y(n)))

Doan Nhat Quang Introduction to Algorithms and Data Structures 51 / 55

Algorithm complexity

▶ O(1): Accessing any single element in an array takes constant time
as only one operation has to be performed to locate it; or any
arithmeric operations between two numbers, only one operation has
to be done.

▶ O(ln(n)): Algorithms taking logarithmic time are commonly found
in operations on binary trees or when using binary search.

▶ O(n): This linear complexity means that for large enough input
sizes, the running time increases linearly with the size of the input.

▶ O(n2):This quadratic complexity can be seen in algorithms, for
example, bubble sort and insertion sort consisting of nested loops (a
loop inside another loop) with the size of n.

▶ O(n3): This running time often requires the multiplication of two
nxn matrices

▶ O(2n): An exponential running time is used to found in the
traveling salesman problem.

Doan Nhat Quang Introduction to Algorithms and Data Structures 52 / 55

Algorithm complexity

log n
√
n n nlogn n(logn)2 n2

3 3 10 33 110 100
7 10 100 664 4,414 10,000
10 32 1,000 9,966 99,317 1,000,000
13 100 10,000 132,877 1,765,633 100,000,000
17 316 100,000 1,660,964 27,588,016 10,000,000,000

Doan Nhat Quang Introduction to Algorithms and Data Structures 53 / 55

Example

1 f o r (i n t i = 1 ; i <n ; i++)
2 f o r (i n t j = 1 ; j <n ; j++)
3 a [i] [j] = 0 ;

1 f o r (i n t i = 1 ; i <n ; i++)
2 f o r (i n t j = 1 ; j <n ; j++)
3 a [i] [j] = 0 ;
4 f o r (i n t k = 1 ; k < n ; k++)
5 a [k] [k] = 1 ;

Doan Nhat Quang Introduction to Algorithms and Data Structures 54 / 55

Example

1 i n t sum = 0 ;
2 i n t x , y ;
3 f o r (i n t i = 1 ; i <n ; i++)
4 f o r (i n t j = 1 ; j <n ; j++){
5 f o r (i n t k = 1 ; k < 100 ; k++){
6 y = k ;
7 x = 2*y ;
8 }
9 sum = sum + i * j *k ;
10 }

Doan Nhat Quang Introduction to Algorithms and Data Structures 55 / 55

	anm1:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

