
INDEXING

Lê Hồng Hải

UET-VNUH

2

Index 1

Compound index2

Function Index3

FTS4

Today’s Overview

3

Indexing

 Using indexes to quickly find rows with
specific column values

 Without an index, MySQL must scan the
whole table to locate the relevant rows
The larger table, the slower it searches

4

Query Explain example

Explain SELECT

 employeeNumber,

 lastName,

 firstName

FROM

 employees

WHERE

 jobTitle = 'Sales Rep’;

 MySQL had to scan the whole table to find
the employees with the Sales Rep job title

5

Create Index

 Let’s create an index for the jobTitle column by using the
CREATE INDEX statement:

◼ CREATE INDEX jobTitle ON employees(jobTitle);

EXPLAIN SELECT

 employeeNumber,

 lastName,

 firstName

FROM

 employees

WHERE

 jobTitle = 'Sales Rep';

6

Indexing LIKE Filters

 There are search terms that can be indexed very
well, but others can not

 It is the position of the wild card characters that
make all the difference

 Can not be indexed

◼ SELECT * FROM tbl_name WHERE key_col LIKE
'%Patrick%’;

 Can be indexed

◼ SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%’

◼ SELECT * FROM tbl_name WHERE key_col LIKE
'Pat%_ck%';

7

Compound Index

A compound (composite) index is an index on
multiple columns.

CREATE TABLE Employee (

id INT NOT NULL,

lastname varchar(50) not null,

firstname varchar(50) not null,

PRIMARY KEY (id),

INDEX name (lastname, firstname)

);

8

Compound Index

 The query optimizer uses the composite
indexes for queries that:

◼Test all columns in the index, or

◼Test the first columns, the first two
columns, and so on

9

Compound Index

 The following queries use the name index:

SELECT * FROM Employee WHERE lastname='Shah';

SELECT * FROM Employee WHERE lastname ='Shah'
AND firstname ='Mona’

 There are some queries in which composite indexes
will not work:

SELECT * FROM Employee WHERE firstname='Mona';

SELECT * FROM Employee WHERE lastname='Shah'

OR firstname='Mona';

10

Primary Index

 When you create a table with a primary key or
unique key, MySQL automatically creates a
special index named PRIMARY. This index is
called the clustered index.

Why do we need to create ‘productCode’

index?

11

Descending Index

 A descending index is an index that stores
key values in descending order

EXPLAIN SELECT
 *
FROM
 t
ORDER BY a DESC , b DESC; -- use index a_desc_b_desc

12

Function Index

13

Function Index

 From MySQL 8.0.13, there is support for indexing
using functions

 Alter table orders add index
((year(orderDate)), (month(orderDate)));

14

FULLTEXT Search (FTS)

 Full-text search is a technique to search
for documents that don’t perfectly match
the search criteria

 For example, you can search for Wood
and Metal, FTS can return results that
contain the searched words separately

15

LIKE Filter

 MySQL has to scan the whole table to find
the exact text based on a pattern in the
LIKE statement or pattern in the regular
expressions

 It is difficult to have a flexible search
query

16

Create FULLTEXT index

CREATE TABLE table_name(

 column_list,

 ...,

 FULLTEXT (column1,column2,..)

);

17

Create FULLTEXT Search

 Create a full-text search in the
productLine column of the products table
using the ALTER TABLE ADD FULLTEXT
statement:

ALTER TABLE products

ADD FULLTEXT(productline);

18

Search using FTS

 You can search for products whose
product lines contain the term Classic .
You use the MATCH() and AGAINST()
functions as the following query:
SELECT

 productName,

 productLine

FROM products

WHERE

 MATCH(productLine)

 AGAINST('Classic');

19

Search using FTS

 To search for a product whose product line
contains Classic or Vintage term, you can
use the following query:
SELECT

 productName,

 productLine

FROM products

WHERE

 MATCH(productline)

 AGAINST('Classic,Vintage')

ORDER BY productName;

20

Boolean Full-Text Searches

 In the Boolean mode, MySQL searches for
words instead of the concept like in the
natural language search
SELECT productName, productline

FROM products

WHERE MATCH(productName) AGAINST('Truck -
Pickup' IN BOOLEAN MODE)

21

Boolean Full-Text Searches

 To search for rows that contain at least one of the
two words: mysql or tutorial

 ‘mysql tutorial’

 To search for rows that contain both words:
mysql and tutorial

 ‘+mysql +tutorial’

 To search for rows that contain the word “mysql”,
but put the higher rank for the rows that contain
“tutorial”:

 ‘+mysql tutorial’

…

22

ngramFull-Text Parser

 When it comes to ideographic languages such as
Chinese, Japanese, and Korean, the full-text parser
has a limitation in that these ideographic
languages do not use word delimiters

 MySQL provided the ngram full-text parser. Since
version 5.7.6, MySQL included ngram full-text parser
as a built-in server plugin delimiters

PARTITIONING

24

PARTITIONING

25

PARTITIONING

 Parts of the table are saved as separate
tables in different locations

 Allows distribution of table parts across the
file system according to established rules
(partitioning function)

26

Advantages

 Some queries may be optimal if the data
that satisfies the WHERE clause is
determined to be stored in one or more
partitions

 You can also use partitioning to distribute
the data across different disks

 Partitions are updateable, data can be
reorganized to enhance frequent queries

 Data that is no longer useful can often be
easily removed by deleting the partition

27

Partitioning types

 RANGE: assigns rows to partitions based
on column values within a range

 LIST: similar to RANGE, but the list is a
collection of discrete values

 HASH: based on the value returned by a
user-defined expression (produces an
integer, non-negative value)

 KEY: similar to hash partitioning, except
that the hash function is provided by the
MySQL server

28

Key Partitioning

CREATE TABLE members (

 firstname VARCHAR(25) NOT NULL,

 lastname VARCHAR(25) NOT NULL,

 username VARCHAR(16) NOT NULL,

 email VARCHAR(35),

 joined DATE NOT NULL

)

PARTITION BY KEY(joined) PARTITIONS 6;

29

Range Partitioning

CREATE TABLE members (

 firstname VARCHAR(25) NOT NULL,

 lastname VARCHAR(25) NOT NULL,

 username VARCHAR(16) NOT NULL,

 email VARCHAR(35),

 joined DATE NOT NULL

)

PARTITION BY RANGE(YEAR(joined))(

PARTITION p0 VALUES LESS THAN (1960),

PARTITION p1 VALUES LESS THAN (1970),

PARTITION p2 VALUES LESS THAN (1980),

PARTITION p3 VALUES LESS THAN (1990),

PARTITION p4 VALUES LESS THAN MAXVALUE

);

30

List Partitioning

CREATE TABLE employees (

 id INT NOT NULL,

 fname VARCHAR(30),

 lname VARCHAR(30),

 hired DATE NOT NULL DEFAULT '1970-01-01',

 separated DATE NOT NULL DEFAULT '9999-12-31',

 job_code INT, store_id INT

) PARTITION BY LIST(store_id) (

PARTITION pNorth VALUES IN (3,5,6,9,17),

PARTITION pEast VALUES IN (1,2,10,11,19,20),

PARTITION pWest VALUES IN (4,12,13,14,18),

PARTITION pCentral VALUES IN (7,8,15,16)

);

31

Partition Management

 ALTER TABLE

 PARTITION BY, ADD PARTITION, DROP PARTITION,

REORGANIZE PARTITION, COALESCE PARTITION

32

Partition Management

 ALTER TABLE trb3 PARTITION BY KEY(id)

PARTITIONS 2;

 ALTER TABLE tr DROP PARTITION p2;

 ALTER TABLE ADD PARTITION (PARTITION p3

VALUES LESS THAN (2000));

33

Partition Information

 SHOW CREATE TABLE

 SHOW TABLE STATUS

 INFORMATION_SCHEMA.PARTITIONS

http://dev.mysql.com/doc/refman/5.5/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.5/en/show-table-status.html
http://dev.mysql.com/doc/refman/5.5/en/partitions-table.html

34

Partitioning on Workbench

35

MySQL Partitioning Limitations

 Foreign keys are not supported

 Partition tables do not support FULL TEXT
searches

 All columns used in partitioning need to be
part of every unique key in the table

https://dev.mysql.com/doc/refman/5.7/en/partitioning-
limitations.html

THANKS YOU

	Slide 1: INDEXING
	Slide 2: Today’s Overview
	Slide 3: Indexing
	Slide 4: Query Explain example
	Slide 5: Create Index
	Slide 6: Indexing LIKE Filters
	Slide 7: Compound Index
	Slide 8: Compound Index
	Slide 9: Compound Index
	Slide 10: Primary Index
	Slide 11: Descending Index
	Slide 12: Function Index
	Slide 13: Function Index
	Slide 14: FULLTEXT Search (FTS)
	Slide 15: LIKE Filter
	Slide 16: Create FULLTEXT index
	Slide 17: Create FULLTEXT Search
	Slide 18: Search using FTS
	Slide 19: Search using FTS
	Slide 20: Boolean Full-Text Searches
	Slide 21: Boolean Full-Text Searches
	Slide 22: ngram Full-Text Parser
	Slide 23: PARTITIONING
	Slide 24: PARTITIONING
	Slide 25: PARTITIONING
	Slide 26: Advantages
	Slide 27: Partitioning types
	Slide 28: Key Partitioning
	Slide 29: Range Partitioning
	Slide 30: List Partitioning
	Slide 31: Partition Management
	Slide 32: Partition Management
	Slide 33: Partition Information
	Slide 34: Partitioning on Workbench
	Slide 35: MySQL Partitioning Limitations
	Slide 36: Thanks you

