
Data Structures I: Lists & Linked Lists

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi

ICT department

Doan Nhat Quang Data Structures I: Lists & Linked Lists 1 / 50

Today Objectives

▶ Introduce the basis of Linked Lists: declaration, initialization,
and use.

▶ Learn different functions, and operations with Linked Lists:
add, remove, search, etc.

▶ Implement examples in C/C++.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 2 / 50

Data Structures

▶ Data structures study the organization of data in computers
▶ the (abstract) data types (definition and representation)
▶ relationship between elements of this type
▶ operations on data types: retrieve, manipulate, compute, etc.

▶ Algorithms
▶ methods to operate on data structures: efficiency and

simplicity
▶ program = data structures + algorithm

Doan Nhat Quang Data Structures I: Lists & Linked Lists 3 / 50

Data Structure

▶ A data structure consists of
▶ a collection of data elements
▶ a set of operations on these data elements

▶ Data structures in C:
▶ primitive or pre-defined: any language defines a group of

pre-defined data types such as int, char, float, double in C
▶ non-primitive or user-defined (Data structure): any

language allows users to define their own (new) data types
such as struct in C.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 4 / 50

Data Structures

Doan Nhat Quang Data Structures I: Lists & Linked Lists 5 / 50

Data Structure

▶ Primitive data types:
▶ type: int
▶ elements:, -2, -1, 0, 1, 2, ...
▶ operations: +, - , *, /, %, ...

▶ Data structures:
▶ type: complex
▶ elements: 1+3i, -15 + 93i, ...
▶ operations: add, distance, square, etc.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 6 / 50

Data Types vs Data Structures

Data Types Data Structures
- Can hold values and not data;
values of the given data type
are assigned to a particular
variable

- Data can be represented us-
ing an object

- Values can directly be as-
signed to the data type vari-
ables (using ‘=’)

- Data is given to the data
structure object using some set
of algorithms and operations

- No problem with time com-
plexity O(1)

- Time complexity comes into
play when working with data
structures

Doan Nhat Quang Data Structures I: Lists & Linked Lists 7 / 50

Structures

Structure is a user-defined data type available in C programming,
which allows combining one or more variables, possibly of different
types, grouped under a single name for convenient handling.

1 s t r u c t [s t r u c t u r e tag]{
2 member d e f i n i t i o n ;
3 member d e f i n i t i o n ;
4 . . .
5 member d e f i n i t i o n ;
6 } [s t r u c t u r e name] ;

Doan Nhat Quang Data Structures I: Lists & Linked Lists 8 / 50

Structures

▶ Container for related data for easy access

▶ May have empty gaps between members

▶ Useful in creating data structures such as linked lists, queues,
trees, etc.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 9 / 50

Structures

1 s t r u c t Student {
2 i n t age ;
3 char name [5 0] ;
4 uns i gned char gender ;
5 } ;
6 s t r u c t Student s1 , s2 ;

Doan Nhat Quang Data Structures I: Lists & Linked Lists 10 / 50

Lists

Definition

A list is a collection with a finite number of data objects that has
the following properties:

▶ It is homogeneous, i.e., the elements are all of the same types.

▶ It has a finite length.

▶ Its elements are arranged in sequential (linear) order.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 11 / 50

Lists

▶ Polynomial functions
▶ 13 + 4x2 + 79x3 + 100x10 + 16x58

▶ Unbounded Integers
▶ 45691301889213211547991048879312654897613

▶ Text
▶ ”This is a sample of text!!”

Doan Nhat Quang Data Structures I: Lists & Linked Lists 12 / 50

Lists

Doan Nhat Quang Data Structures I: Lists & Linked Lists 13 / 50

Lists

Doan Nhat Quang Data Structures I: Lists & Linked Lists 14 / 50

Lists

Common different approaches for implementing a List data
structure

▶ Static array: arrays can be simply used to manipulate
collections of elements.

▶ Dynamic array: using malloc() is capable of representing a
list to avoid the fixed-size list

▶ Linked list: A very flexible mechanism for dynamic memory
management is provided by pointers.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 15 / 50

Lists

Basic operations are often defined

1 init(): create an empty list

2 isEmpty(): check if the list is empty

3 insert(): add new item in a list

4 remove(): remove an item from a list

Some other possible operations can be used:

1 length(): return the length of a list

2 search(): search a specific element in a list

3 display(): display a list

4 sort(): sort all items in a list

Doan Nhat Quang Data Structures I: Lists & Linked Lists 16 / 50

Lists

Basic operations are often defined

1 init(): create an empty list

2 isEmpty(): check if the list is empty

3 insert(): add new item in a list

4 remove(): remove an item from a list

Some other possible operations can be used:

1 length(): return the length of a list

2 search(): search a specific element in a list

3 display(): display a list

4 sort(): sort all items in a list

Doan Nhat Quang Data Structures I: Lists & Linked Lists 16 / 50

Static Array-based Lists

The idea is to store the list in a fixed-size static array.

1 s t r u c t L i s t {
2 i n t s i z e ;
3 i n t data [CAPACITY] ;
4 } ;
5 t y p ed e f s t r u c t L i s t L i s t ;

Doan Nhat Quang Data Structures I: Lists & Linked Lists 17 / 50

Static Array-based Lists

▶ Before use, a list must have to be initialized with no element.

▶ The below init() requires an initialization of l in the main()
using (List*)malloc(sizeof(List));.

1 v o i d i n i t (L i s t * l) {
2 l=>s i z e = 0 ;
3 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 18 / 50

Static Array-based Lists

▶ If l is initialized and gets malloc() inside the function, you
should return l to the actual argument.

1 L i s t * i n i t (L i s t * l , i n t N) {
2 l = (L i s t *) ma l l o c (s i z e o f (L i s t)) ;
3 l=>s i z e = 0 ;
4 r e t u r n l ;
5 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 19 / 50

Static Array-based Lists

▶ Several operations require to verify whether a list is not empty
or else further operations will be treated.

1 i n t isEmpty (L i s t * l) {
2 r e t u r n (l=>s i z e ==0);
3 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 20 / 50

Static Array-based Lists

▶ This function provides basic information about a list.

1 i n t l e n g t h (L i s t * l) {
2 r e t u r n l=>s i z e ;
3 }

▶ An array-based list allows access directly to the index of its
elements. display() functions can be implemented to provide
its information.

1 v o i d d i s p l a y (L i s t * l){
2 f o r (i n t i =0; i<l e n g t h (l) ; i ++){
3 p r i n t f (’ ’ Element %d : %d ’ ’ , i , l=>data [i]) ;
4 }
5 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 21 / 50

Static Array-based Lists

Before the insertion, several verifications on the index should be done.
Elements next to the inserted index should be shifted to the right.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 22 / 50

Static Array-based Lists

1 v o i d add (L i s t * l , i n t index , i n t v a l){
2 i f (l e n g t h (l) == CAPACITY){
3 p r i n t f (” Cannot add more i t e m s to t h e l i s t ! ”) ;
4 r e t u r n ;
5 }
6 i f ((i n d e x < 0) | | (index> l e n g t h (l))){
7 p r i n t f (” I l l e g a l i n d e x ! ”) ; r e t u r n ;
8 }
9 e l s e {

10 f o r (i n t i=l e n g t h (l) ; i>i n d e x ; i==)
11 l=>v a l [i] = l=>v a l [i =1] ;
12 l=>v a l [i n d e x] = v a l ;
13 l=>s i z e ++;
14 }
15 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 23 / 50

Static Array-based Lists

Removing an item with a specific index from a list requires shifting
elements to the left.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 24 / 50

Static Array-based Lists

1 v o i d remove (L i s t * l , i n t i n d e x){
2 i f (i sEmpty (l) == 1){
3 p r i n t f (” L i s t i s empty ! ”) ;
4 r e t u r n ;
5 }
6 i f ((i n d e x < 0) | | (index> l e n g t h (l))){
7 p r i n t f (” I l l e g a l i n d e x ! ”) ;
8 r e t u r n ;
9 }

10 e l s e {
11 f o r (i n t i=index =1; i<l e n g t h (l) ; i ++)
12 l=>v a l [i] = l=>v a l [i +1] ;
13 l=>s i z e ==;
14 }
15 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 25 / 50

Dynamic Array-based Lists

▶ We often don’t know the size of the memory in the problem in
advance.

▶ Instead of Static Lists, Dynamic Lists can be used.

1 t y p ed e f s t r u c t L i s t {
2 i n t s i z e ;
3 i n t c a p a c i t y ;
4 i n t * v a l ;
5 } L i s t ;

Doan Nhat Quang Data Structures I: Lists & Linked Lists 26 / 50

Dynamic Array-based Lists

▶ The initialization will be implemented with the use of the
malloc function.

▶ The below init() requires an initialization of l in the main()
using (List*)malloc(sizeof(List));.

1 vo i d i n i t (L i s t * l , i n t N) {
2 l=>s i z e = 0 ;
3 l=>c a p a c i t y = N;
4 l=>v a l = (i n t *) ma l l o c (l=>c a p a c i t y) ;
5 }

▶ All other operations are the same as the ones of Static
Array-based Lists.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 27 / 50

Dynamic Array-based Lists

▶ If l is initialized and gets malloc() inside the function, you
should return l to the actual argument.

1 L i s t * i n i t (L i s t * l , i n t N) {
2 l = (L i s t *) ma l l o c (s i z e o f (L i s t)) ;
3 l=>s i z e = 0 ;
4 l=>c a p a c i t y = N;
5 l=>v a l = (i n t *) ma l l o c (l=>c a p a c i t y) ;
6 r e t u r n l ;
7 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 28 / 50

Array-based Lists

Array-based list implementation:

Pros

▶ easy to understand and simple to implement.

▶ able to access to any element.

Cons

▶ the size has to be fixed beforehand.

▶ inserting or deleting an element is very difficult because we
have to shift the position of many elements.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 29 / 50

Linked Lists

Definition

In Linked Lists, each item is placed together with the link to the
next item, resulting in a simple component called a node:

▶ A data part stores an element value of the list.

▶ A next part contains a link (or pointer) that indicates the
node’s location containing the next list element. If a link does
not point to a node, its value is set to NULL (a special C++
constant in stdlib.h).

Doan Nhat Quang Data Structures I: Lists & Linked Lists 30 / 50

Linked Lists

▶ An array is a static data structure. This means the array’s
length cannot be altered at run time. While a linked list is a
dynamic data structure.

▶ In an array, all the elements are kept at consecutive memory
locations, while in a linked list, the elements (or nodes) may
be kept at any location but are still connected.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 31 / 50

Linked Lists

▶ Successive elements are linked by pointers, and the last
element points to NULL.

▶ The size grows or shrinks during the execution of a program;
it does not waste memory space like Array-based List data
structure.

▶ Linked lists provide flexibility in allowing the items to be
rearranged efficiently for inserting or deleting an element.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 32 / 50

Linked Lists applications

▶ To represent unbounded integers: -874

▶ To represent polynomial functions: 13x3 + 9x1 − 8

Doan Nhat Quang Data Structures I: Lists & Linked Lists 33 / 50

Linked Lists applications

▶ Blockchain adopts the same principle as Linked List.
▶ Block in blockchain has the hash function/number; Nodes in a

linked list have a pointer.
▶ Blockchain’s data structure is Linked List, but Blockchain is a

cryptography protocol.

▶ Linked list principle is applied in Stack, Queue, Tree, Graph.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 34 / 50

Linked Lists

Basic operations are often defined

1 init(): create an empty list

2 isEmpty(): check if the list is empty

3 insert(): add new item in a list

4 remove(): remove an item from a list

Some other possible operations can be used:

1 length(): return the length of a list

2 search(): search a specific element in a list

3 display(): display a list

4 sort(): sort all items in a list

Doan Nhat Quang Data Structures I: Lists & Linked Lists 35 / 50

Linked Lists

Basic operations are often defined

1 init(): create an empty list

2 isEmpty(): check if the list is empty

3 insert(): add new item in a list

4 remove(): remove an item from a list

Some other possible operations can be used:

1 length(): return the length of a list

2 search(): search a specific element in a list

3 display(): display a list

4 sort(): sort all items in a list

Doan Nhat Quang Data Structures I: Lists & Linked Lists 35 / 50

Linked Lists

1 t y p e d e f s t r u c t Node {
2 i n t data ;
3 s t r u c t Node * pnext ;
4 } Node ;
5 t y p e d e f s t r u c t L i s t {
6 i n t s i z e ;
7 Node *pHead ;
8 } L i s t ;

Doan Nhat Quang Data Structures I: Lists & Linked Lists 36 / 50

Linked Lists

▶ A linked list must be initialized with the head node, a NULL
pointer.

1 v o i d i n i t (L i s t * l){
2 // l g e t s m a l l o c () i n t he main () f u n c t i o n
3 // memset (l , 0 , s i z e o f (L i s t)) ;
4 // o l d e r c o m p i l e r s may r e q u i r e t h i s f u n c t i o n
5 l=>s i z e =0;
6 l=>pHead=NULL ;
7 }
8 Node* i n i t N o d e (i n t v a l){
9 Node *node = (Node *) m a l l o c (s i z e o f *node) ;

10 node=>data = v a l ;
11 r e t u r n node ;
12 }

▶ A list is empty if there is no element or the head node is NULL.

1 i n t isEmpty (L i s t * l){
2 r e t u r n (l=>s i z e == 0) ;
3 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 37 / 50

Linked Lists

There are two cases while inserting new elements into a list:

1 If the list is empty, its first element will be added to the list
head.

1 vo i d i n s e r t F i r s t (Node *pnew , L i s t * l){
2 i f (i sEmpty (l)){
3 l=>s i z e ++;
4 l=>pHead = pnew ;
5 }
6 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 38 / 50

Linked Lists

2 A new node is linked after a specific node.

1 vo i d i n s e r t (Node *pnew , Node * ptr , L i s t * l){
2 pnew=>pnext = ptr=>pnext ;
3 pt r=>pnext=pnew ;
4 l=>s i z e++;
5 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 39 / 50

Linked Lists

There are two cases while removing an element from a list:

1 If the first element is removed, the head should point to the
next node of the first element.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 40 / 50

Linked Lists

2 In another case, any node is removed, and a new link is
created between the previous node and the next node.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 41 / 50

Linked Lists

free() is used to free the allocated memory.

1 vo i d remove (L i s t * l , i n t v a l){
2 Node *p = l=>pHead ;
3 i f (p=>data == va l){
4 l=>pHead = p=>pnext ;
5 f r e e (p) ;
6 l=>s i z e ==;
7 r e t u r n ;
8 }
9 Node *q = p=>pnext ;

10 i n t cnt = 1 ;
11 wh i l e ((p=>data != v a l) && (cnt <l e n g t h (l))){
12 q = p ;
13 p = p=>pnext ;
14 }
15 i f (p != NULL){
16 q=>pnext = p=>pnext ;
17 l=>s i z e ==;
18 f r e e (p) ;
19 }
20 }

Doan Nhat Quang Data Structures I: Lists & Linked Lists 42 / 50

Comparisons

Comparisons of complexity for different list implementations
Linked list Array

Indexing O(n) O(1)
Insert/delete at the beginning O(1) O(n)
Insert/delete at the end O(n) O(1)
Insert/detele at the middle searching time shifting time

Doan Nhat Quang Data Structures I: Lists & Linked Lists 43 / 50

Doubly Linked Lists

Doubly Linked Lists is a variation of Linked List in which
navigation is possible in both ways either forward and backward.

▶ A data part stores an element value of the list.

▶ A next part contains a link indicating the next element.

▶ A previous part contains a link indicating the previous element.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 44 / 50

Doubly Linked Lists

1 t y p e d e f s t r u c t Node {
2 i n t data ;
3 s t r u c t Node * pnext ;
4 s t r u c t Node * p r e s ;
5 } Node ;
6 t y p e d e f s t r u c t L i s t {
7 i n t s i z e ;
8 Node *pHead ;
9 Node * p T a i l ;

10 } L i s t ;

Doan Nhat Quang Data Structures I: Lists & Linked Lists 45 / 50

Doubly Linked Lists

Insertion at the head of Double Linked Lists

Insertion at the middle of Double Linked Lists

Doan Nhat Quang Data Structures I: Lists & Linked Lists 46 / 50

Doubly Linked Lists

Basic operations are often defined

1 init(): create an empty list

2 isEmpty(): check if the list is empty

3 insert(): add new item in a list. It is possible to add new
elements to the head or the tail.

4 remove(): remove an item from a list

Some other possible operations can be used:

1 length(): return the length of a list

2 search(): search a specific element in a list

3 display(): display a list from left to right or from right to left.

4 sort(): sort all items in a list

Doan Nhat Quang Data Structures I: Lists & Linked Lists 47 / 50

Doubly Linked Lists

Basic operations are often defined

1 init(): create an empty list

2 isEmpty(): check if the list is empty

3 insert(): add new item in a list. It is possible to add new
elements to the head or the tail.

4 remove(): remove an item from a list

Some other possible operations can be used:

1 length(): return the length of a list

2 search(): search a specific element in a list

3 display(): display a list from left to right or from right to left.

4 sort(): sort all items in a list

Doan Nhat Quang Data Structures I: Lists & Linked Lists 47 / 50

Doubly Linked Lists

Advantages

▶ Linked lists are a dynamic data structure that can grow and
be pruned, allocating and deallocating memory while the
program runs.

▶ Insertion and deletion node operations are easily implemented
in a linked list.

▶ Linear data structures such as stacks and queues are easily
executed with a linked list (next chapter).

Doan Nhat Quang Data Structures I: Lists & Linked Lists 48 / 50

Doubly Linked Lists

Disadvantages

▶ Nodes in a linked list must be read in order from the
beginning as linked lists are inherently sequential.

▶ Nodes are stored contiguously, greatly increasing the time
required to access individual elements within the list.

▶ Difficulties arise in linked lists when it comes to reverse
traversing. For instance, singly linked lists are cumbersome to
navigate backward, and while doubly linked lists are somewhat
easier to read, memory is wasted in allocating space for a
back-pointer.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 49 / 50

Linked List Applications

Applications

▶ Great use of the doubly linked list is in navigation systems, as
it needs front and back navigation.

▶ Linked lists can be implemented to represent structured data,
i.e., graphs, trees in the web domain, social networks, etc.

▶ Multiply linked lists, Circular Linked lists are available to deal
with specific issues.

Doan Nhat Quang Data Structures I: Lists & Linked Lists 50 / 50

