
Searching
Sorting

Searching and Sorting Algorithms

Doan Nhat Quang

doan-nhat.quang@usth.edu.vn
University of Science and Technology of Hanoi

ICT department

Doan Nhat Quang Searching and Sorting Algorithms 1 / 44

Searching
Sorting

Linear Search
Binary Search

Today Objectives

▶ Introduce searching and sorting algorithms

▶ Describe how to perform case analysis for searching and
sorting algorithms.

▶ Describe the efficiency of sorting and searching algorithms.

Doan Nhat Quang Searching and Sorting Algorithms 2 / 44

Searching
Sorting

Linear Search
Binary Search

Searching

▶ Searching is a common task in computer programming.

▶ Searching is the process of looking for a specific element in a
database.

Doan Nhat Quang Searching and Sorting Algorithms 3 / 44

Searching
Sorting

Linear Search
Binary Search

Searching

▶ Searching is a common task in computer programming.

▶ Searching is the process of looking for a specific element in a
database.

Doan Nhat Quang Searching and Sorting Algorithms 3 / 44

Searching
Sorting

Linear Search
Binary Search

Searching

Context

▶ In this class, we will study searching algorithms and perform
demos for numerical arrays.

▶ Many algorithms and data structures are devoted to searching
but, we will study only two approaches: linear search and
binary search.

Doan Nhat Quang Searching and Sorting Algorithms 4 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Linear Search

▶ compare the key element with each element in the array or
the list,

▶ continue the process until the key matches an element in the
list or the list is exhausted without a match being found

▶ if a match is made, it returns the index of the element in the
array that matches the key. If it is not the case, it returns -1.

Doan Nhat Quang Searching and Sorting Algorithms 5 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Iterative linear search:
▶ For each item in the list:

▶ if that item has the desired value,
▶ stop the search and return the item’s location.

▶ return not found.

Recursive linear search RecurSearch(value, list):

▶ if the list is empty, return not found;
▶ else,

▶ if that item has the desired value,
▶ stop the search and return the item’s location.

▶ else
▶ return RecurSearch(value, remainder of the list)

Doan Nhat Quang Searching and Sorting Algorithms 6 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

Iterative linear search:
▶ For each item in the list:

▶ if that item has the desired value,
▶ stop the search and return the item’s location.

▶ return not found.

Recursive linear search RecurSearch(value, list):

▶ if the list is empty, return not found;
▶ else,

▶ if that item has the desired value,
▶ stop the search and return the item’s location.

▶ else
▶ return RecurSearch(value, remainder of the list)

Doan Nhat Quang Searching and Sorting Algorithms 6 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

1 i n t s e a r c h (i n t a [] , i n t x , i n t n) {
2 f o r (i n t i =0; i<n ; i++)
3 i f (a [i] == x) r e t u r n i ;
4 r e t u r n =1;
5 }

1 i n t s e a r c h (i n t a [] , i n t x) {
2 i f (i s empty (a)) r e t u r n =1;
3 e l s e
4
5 i f (a [1] == x) r e t u r n 1 ;
6 e l s e
7 r e t u r n s e a r c h (remain (a , 1) , x) ;
8 }

Doan Nhat Quang Searching and Sorting Algorithms 7 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

1 i n t s e a r c h (i n t a [] , i n t x , i n t n) {
2 f o r (i n t i =0; i<n ; i++)
3 i f (a [i] == x) r e t u r n i ;
4 r e t u r n =1;
5 }

1 i n t s e a r c h (i n t a [] , i n t x) {
2 i f (i s empty (a)) r e t u r n =1;
3 e l s e
4
5 i f (a [1] == x) r e t u r n 1 ;
6 e l s e
7 r e t u r n s e a r c h (remain (a , 1) , x) ;
8 }

Doan Nhat Quang Searching and Sorting Algorithms 7 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search

▶ In the worst scenario, we have to search all the elements in
the array. If there are n elements in the array, we need n
operations.

▶ In the best scenario search, we need only one operation to
find the key element. The first element in the array matches
the key.

▶ In average, we need n
2 operations (if middle of the array)to

finish the searching process.

Linear Search is not really efficient. Binary Search is a better
option for searching arrays.

Doan Nhat Quang Searching and Sorting Algorithms 8 / 44

Searching
Sorting

Linear Search
Binary Search

Binary Search

Binary Search

▶ The array is supposed to be sorted beforehand.

▶ A binary search begins by comparing the middle element of
the array with the key element. If a match is made, it returns
the value.

▶ If the key value is less or more than the middle element,
▶ the search continues the lower or upper half of the array

respectively.
▶ a new middle element is selected while eliminating the other

half from consideration.

Doan Nhat Quang Searching and Sorting Algorithms 9 / 44

Searching
Sorting

Linear Search
Binary Search

Binary Search

Binary Search

▶ The array is supposed to be sorted beforehand.

▶ A binary search begins by comparing the middle element of
the array with the key element. If a match is made, it returns
the value.

▶ If the key value is less or more than the middle element,
▶ the search continues the lower or upper half of the array

respectively.
▶ a new middle element is selected while eliminating the other

half from consideration.

Doan Nhat Quang Searching and Sorting Algorithms 9 / 44

Searching
Sorting

Linear Search
Binary Search

Binary Search

Binary Search

▶ The array is supposed to be sorted beforehand.

▶ A binary search begins by comparing the middle element of
the array with the key element. If a match is made, it returns
the value.

▶ If the key value is less or more than the middle element,
▶ the search continues the lower or upper half of the array

respectively.
▶ a new middle element is selected while eliminating the other

half from consideration.

Doan Nhat Quang Searching and Sorting Algorithms 9 / 44

Searching
Sorting

Linear Search
Binary Search

Binary Search

Binary Search

▶ The array is supposed to be sorted beforehand.

▶ A binary search begins by comparing the middle element of
the array with the key element. If a match is made, it returns
the value.

▶ If the key value is less or more than the middle element,
▶ the search continues the lower or upper half of the array

respectively.
▶ a new middle element is selected while eliminating the other

half from consideration.

Doan Nhat Quang Searching and Sorting Algorithms 9 / 44

Searching
Sorting

Linear Search
Binary Search

Binary Search

Binary Search

▶ The array is supposed to be sorted beforehand.

▶ A binary search begins by comparing the middle element of
the array with the key element. If a match is made, it returns
the value.

▶ If the key value is less or more than the middle element,
▶ the search continues the lower or upper half of the array

respectively.
▶ a new middle element is selected while eliminating the other

half from consideration.

Doan Nhat Quang Searching and Sorting Algorithms 9 / 44

Searching
Sorting

Linear Search
Binary Search

Binary Search

Iterative binary search

1 i n t b s ea r ch (i n t a [] , i n t sz , i n t x){
2 i n t low = 0 , h igh = sz =1;
3 wh i l e (low <= high) {
4 i n t mid = (low+h igh) / 2 ;
5 i f (x < a [mid])
6 h igh = mid = 1 ;
7 e l s e i f (x > a [mid])
8 low = mid + 1 ;
9 e l s e
10 r e t u r n mid ;
11 }
12 r e t u r n =1;
13 }

Doan Nhat Quang Searching and Sorting Algorithms 10 / 44

Searching
Sorting

Linear Search
Binary Search

Binary Search

Recursive binary search

1 i n t r b s e a r c h (i n t a [] , i n t low , i n t h igh , i n t x)
2 {
3 i f (low > h igh) r e t u r n =1;
4 i n t mid = (low + h igh) / 2 ;
5 i f (x < a [mid])
6 r e t u r n r b s e a r c h (a , low , mid=1, x) ;
7 e l s e i f (x > a [mid])
8 r e t u r n r b s e a r c h (a , mid+1, high , x) ;
9 e l s e
10 r e t u r n mid ;
11 }

Doan Nhat Quang Searching and Sorting Algorithms 11 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search vs Binary Search

▶ Binary search is more efficient. The complexity of linear search
is O(n) while the complexity of binary search is O(logn).

▶ If we have 1 billions elements in the array:
▶ Worst case for linear search: 1 billion comparisons
▶ Worst case for binary search: 30 comparisons

▶ Linear search can work for any array; however, binary search
requires sorted arrays.

→ Sorting algorithms for indexing or grouping elements are needed.

Doan Nhat Quang Searching and Sorting Algorithms 12 / 44

Searching
Sorting

Linear Search
Binary Search

Linear Search vs Binary Search

▶ Binary search is more efficient. The complexity of linear search
is O(n) while the complexity of binary search is O(logn).

▶ If we have 1 billions elements in the array:
▶ Worst case for linear search: 1 billion comparisons
▶ Worst case for binary search: 30 comparisons

▶ Linear search can work for any array; however, binary search
requires sorted arrays.

→ Sorting algorithms for indexing or grouping elements are needed.

Doan Nhat Quang Searching and Sorting Algorithms 12 / 44

Searching
Sorting

Linear Search
Binary Search

Applications of Searching Algorithms

▶ It’s easy to search or sort a number/a string of characters, but
how about images, videos, documents, web?
▶ Content-based Information Retrieval - CBIR: e.g. Google

image (Reverse image search).
▶ Document in text formats, websites: Google search (using

PageRank).
▶ Data indexing simplifying the searching process

▶ How to find customers with the same behaviors? find top
products?

Doan Nhat Quang Searching and Sorting Algorithms 13 / 44

Searching
Sorting

Linear Search
Binary Search

Applications of Searching Algorithms

How to find the patients infected with Covid-19 (F0) by MOH in
Vietnam?

→ Apply the principles of binary search to reduce the test cost and
time

Doan Nhat Quang Searching and Sorting Algorithms 14 / 44

Searching
Sorting

Linear Search
Binary Search

Applications of Searching Algorithms

How to find the patients infected with Covid-19 (F0) by MOH in
Vietnam?

→ Apply the principles of binary search to reduce the test cost and
time

Doan Nhat Quang Searching and Sorting Algorithms 14 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Sorting

Principle

A sorting algorithm is an algorithm that puts elements of a list in a
certain order. For numerical values, we often sort them in
ascending or descending order.

▶ Numbers are said to be in ascending order when they are
arranged from the smallest to the largest number. Example:
2, 3, 5, 8, 13, 15, 21, 23.

▶ Descending order indicates that numbers are arranged from
the largest to the smallest number. Example: 23, 21, 15, 13,
8, 5, 3, 2.

Doan Nhat Quang Searching and Sorting Algorithms 15 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Sorting

Principle

A sorting algorithm is an algorithm that puts elements of a list in a
certain order. For numerical values, we often sort them in
ascending or descending order.

▶ Numbers are said to be in ascending order when they are
arranged from the smallest to the largest number. Example:
2, 3, 5, 8, 13, 15, 21, 23.

▶ Descending order indicates that numbers are arranged from
the largest to the smallest number. Example: 23, 21, 15, 13,
8, 5, 3, 2.

Doan Nhat Quang Searching and Sorting Algorithms 15 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Sorting

▶ Sorting data is one of the most important computing
applications. For complex data such as image, voice, video,
text, document, sorting this data requires advance algorithms.

▶ In this lecture, we explore the simplest known sorting
algorithms for numbers:
▶ Elementary sorting: Selection Sort, Insertion Sort, Bubble Sort.
▶ Advance sorting: Quick Sort, Merge Sort.

Visualize sorting algorithms:

▶ http://math.hws.edu/eck/js/sorting/xSortLab.html

▶ https://www.toptal.com/developers/sorting-algorithms

Doan Nhat Quang Searching and Sorting Algorithms 16 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Elementary Sorting

Problematics

Given an array of n elements denoted by a0, a1, a2, ..., an−1, the
objective is to sort this sequence in ascending order such as:

a0 < a1 < a2 < ... < an−1.

In this lecture, we focus on sorting arrays in ascending order in our
samples.

Doan Nhat Quang Searching and Sorting Algorithms 17 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Elementary Sorting

Algorithms are different from each other, but two criteria should be
considered:

▶ Computational complexity: An efficient sorting algorithm
should have low complexity. Given the size of the list of n
elements, for typical serial sorting algorithms, good behavior is
O(nlogn), with parallel sort in O(log2n), and bad behavior is
O(n2).

▶ Memory consumption: it concerns a program consuming
computer resources. Cheap memory usage is preferred.

Doan Nhat Quang Searching and Sorting Algorithms 18 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Elementary Sorting

Algorithms are different from each other, but two criteria should be
considered:

▶ Computational complexity: An efficient sorting algorithm
should have low complexity. Given the size of the list of n
elements, for typical serial sorting algorithms, good behavior is
O(nlogn), with parallel sort in O(log2n), and bad behavior is
O(n2).

▶ Memory consumption: it concerns a program consuming
computer resources. Cheap memory usage is preferred.

Doan Nhat Quang Searching and Sorting Algorithms 18 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Elementary Sorting

Algorithms are different from each other, but two criteria should be
considered:

▶ Computational complexity: An efficient sorting algorithm
should have low complexity. Given the size of the list of n
elements, for typical serial sorting algorithms, good behavior is
O(nlogn), with parallel sort in O(log2n), and bad behavior is
O(n2).

▶ Memory consumption: it concerns a program consuming
computer resources. Cheap memory usage is preferred.

Doan Nhat Quang Searching and Sorting Algorithms 18 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

Principle

▶ The algorithm divides the input list into two parts: the sublist
of elements already sorted and the unsorted sublist of
elements remaining to be sorted.

▶ The algorithm proceeds by:
▶ find the smallest element in the unsorted sublist
▶ swap this element with the leftmost unsorted element, it

equivalents to move this element from the unsorted sublist to
the sorted one,

▶ continue to proceed with all elements in the unsorted sublist.

Doan Nhat Quang Searching and Sorting Algorithms 19 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

Principle

▶ The algorithm divides the input list into two parts: the sublist
of elements already sorted and the unsorted sublist of
elements remaining to be sorted.

▶ The algorithm proceeds by:
▶ find the smallest element in the unsorted sublist
▶ swap this element with the leftmost unsorted element, it

equivalents to move this element from the unsorted sublist to
the sorted one,

▶ continue to proceed with all elements in the unsorted sublist.

Doan Nhat Quang Searching and Sorting Algorithms 19 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

1: for i ← 0 to n − 1 do
2: idxmin ← argmink=i ,..,n−1 ak
3: swap ai and aidxmin

4: end for

Doan Nhat Quang Searching and Sorting Algorithms 20 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

C/C++ Code

1 vo i d s e l e c t i o n (i n t a [] , i n t n) {
2 i n t i , j ;
3 f o r (i = 0 ; i<n=1 ; i++) {
4 min = i ;
5 f o r (j =i +1; j < n ; j++) {
6 i f (a [j] < a [min])
7 min = j ;
8 }
9 swap(&a [min] , &a [j]) ;
10 }
11 }

Doan Nhat Quang Searching and Sorting Algorithms 21 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Selection Sort

Complexity

Count operations inside the loop

▶ first iteration makes n-1 comparisons, second does n-2, and so
on

▶ one swap per iteration

Total operations:

n -1 + n -2 + n-3 + ... + 2 + 1 = n (n-1) / 2

Thus the complexity of Selection Sort is O(n2)

Doan Nhat Quang Searching and Sorting Algorithms 22 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

Principle

▶ Insertion Sort algorithm iterates between the sorted part and
the unsorted part.

▶ The algorithm proceeds by:
▶ remove one element from the unsorted part
▶ find the location it belongs within the sorted list and inserts it

there.
▶ repeat until no elements remain in the unsorted sublist.

Doan Nhat Quang Searching and Sorting Algorithms 23 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

Principle

▶ Insertion Sort algorithm iterates between the sorted part and
the unsorted part.

▶ The algorithm proceeds by:
▶ remove one element from the unsorted part
▶ find the location it belongs within the sorted list and inserts it

there.
▶ repeat until no elements remain in the unsorted sublist.

Doan Nhat Quang Searching and Sorting Algorithms 23 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

1: for i ← 0 to n − 1 do
2: j ← i
3: while j > 0 && a[j − 1] > a[j] do
4: swap a[j − 1] and a[j]
5: j ← j − 1
6: end while
7: end for

Doan Nhat Quang Searching and Sorting Algorithms 24 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

C/C++ Code

1 vo i d i n s e r t i o n (i n t a [] , i n t n) {
2 i n t i , j ;
3 f o r (i = 0 ; i<n ; i++) {
4 j = i ;
5 wh i l e ((j > 0) && a [j =1] > a [j]) {
6 swap(&a [j] , &a [j =1]) ;
7 j ==;
8 }
9 }
10 }

Doan Nhat Quang Searching and Sorting Algorithms 25 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Insertion Sort

Complexity

Count operations inside the loop

▶ first iteration does 1 comparisons, second does ≤ 2, third ≤ 3
and so on

▶ last iteration optentially follows with n-1 comparisons

Total operations:

n -1 + n -2 + n-3 + ... + 2 + 1 = n (n-1) / 2

Thus the complexity of Insertion Sort is O(n2). However what are
the complexities for the best and the worst?

Doan Nhat Quang Searching and Sorting Algorithms 26 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

Principle

Bubble Sort algorithm proceeds by:

▶ compare each pair of adjacent elements and swaps them if
they are in the wrong order.

▶ pass through the list and repeat until no swaps are needed.

Doan Nhat Quang Searching and Sorting Algorithms 27 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

1: repeat
2: swapped ← false
3: for i ← 1 to n − 1 do
4: if a[i − 1] > a[i] then
5: swap(a[i − 1], a[i])
6: swapped ← true
7: end if
8: end for
9: until swapped = false

Doan Nhat Quang Searching and Sorting Algorithms 28 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

C/C++ Code

1 i n t bubb le (i n t a [] , i n t n) {
2 i n t swapped = 1 ;
3 wh i l e (swapped == 1){
4 swapped = 0 ;
5 f o r (i n t i = 1 ; i <=n ; i++)
6 i f (a [i =1] > a [i]) {
7 swap(&a [i =1] ,&a [i]) ;
8 swapped = 1 ;
9
10 }
11 r e t u r n 0 ;
12 }

Doan Nhat Quang Searching and Sorting Algorithms 29 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Bubble Sort

Complexity

Count operations inside the loop

▶ first iteration does n-1 comparisons and n-1 swaps,

▶ second does n-2 comparisons and n-2 swaps,

▶ (n-1)th iteration does one comparison and one swap.

Total operations:

2(n -1 + n -2 + n-3 + ... + 2 + 1) = n (n-1)

Thus the complexity of Bubble Sort is O(n2).

Doan Nhat Quang Searching and Sorting Algorithms 30 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Conclusion

▶ Selection Sort, Insertion Sort, and Bubble Sort have a
complexity of O(n2) in the worst case where the array is in
descending order. The best case is that the array is already
sorted in the right order.

▶ Since the complexity is too high; sorting algorithms are
sensitive to the size of array n. If n is too big, the cost is very
expensive.

▶ Sorting algorithms have to be improved to accelerate running
time.

Doan Nhat Quang Searching and Sorting Algorithms 31 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Efficient Sorting

The previous algorithms have a high complexity O(n2); many
efficient sorting algorithms are proposed while improving the
running cost (average complexity O(nlogn)).
The most common are:

▶ Merge Sort

▶ Quick Sort

Doan Nhat Quang Searching and Sorting Algorithms 32 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Efficient Sorting

The most common strategy is to use Recursive and Divide and
Conquer algorithms

▶ Divide: If the input size is too large to deal with
straightforwardly, divide the data into two or more disjoint
subsets.

▶ Recur: Use divide and conquer to solve the subproblems
associated with the data subsets.

▶ Conquer: Take the solutions to the sub-problems and “merge”
these solutions into a solution for the original problem.

Doan Nhat Quang Searching and Sorting Algorithms 33 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Principle

Merge sort is a divide and conquer algorithm which can proceed
by:

▶ Divide: divide the unsorted array into n sub-arrays.

▶ Conquer: each sub-array contains one element and an array
of one element is considered sorted.

▶ Recur: merge sub-arrays repeatedly to produce new sorted
sub-array until only one sub-array remains.

▶ the last sub-array will be the sorted array.

Doan Nhat Quang Searching and Sorting Algorithms 34 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Divide the unsorted array into 1-element sub-arrays.

Doan Nhat Quang Searching and Sorting Algorithms 35 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge sub-arrays repeatedly to produce new sorted sub-arrays until
only one sub-array remains.

Doan Nhat Quang Searching and Sorting Algorithms 36 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Merge Soft algorithm can be written as follows :
mergeSort (a, p, r)

1: if (p > r) then
2: q ← (p+r)/2;
3: mergeSort (a, p, q)
4: mergeSort (a, q+1, r)
5: merge (a, p, q, r)
6: end if

where the merge is a function allowing to combination of
sub-arrays.

Doan Nhat Quang Searching and Sorting Algorithms 37 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Merge Sort

Q. How much memory does mergesort require?
A. Too much!

▶ Original input array = n.

▶ Auxiliary array for merging = n.

▶ Local variables: constant.

▶ Function call stack: log n

▶ Total = 2n + log n.

Q: How much memory do other sorting algorithms require?
A: n + k variable declaration for selection sort, insertion sort, and
selection sort.

Doan Nhat Quang Searching and Sorting Algorithms 38 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Principle

Quick sort can be considered as a divide and conquer algorithm
which can proceed by:

▶ Select an element randomly, called a pivot, from the array.

▶ Conquer : arrange the array so that all elements with values
less than the pivot come before the pivot (lower part), while
all elements with values greater than the pivot come after it
(higher part).

▶ Divide: the array is now divided into lower and higher parts.

▶ Recur: apply recursively and separately the above steps to
these two parts.

Doan Nhat Quang Searching and Sorting Algorithms 39 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Choose a pivot and arrange elements respectively into lower and
higher parts

Doan Nhat Quang Searching and Sorting Algorithms 40 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

▶ At the end of this step, we have two new arrays to be sorted.

▶ Each array will be sorted using Quick Sort algorithm.

▶ The base case for recusive calls is where each array has one
element or two elements.

Doan Nhat Quang Searching and Sorting Algorithms 41 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

Quick Soft algorithm can be written as following:
quickSort (a, low, high)

1: if (low < high) then
2: p ← partition(a, low, high)
3: quicksort(a, low, p - 1)
4: quicksort(a, p + 1, high)
5: end if

Doan Nhat Quang Searching and Sorting Algorithms 42 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Quick Sort

partition (a, low, high)

1: pivot ← a[high]
2: i ← lo w
3: for j ← low to high -1 do
4: if a[j]≥ pivot then
5: swap (a[i],a[j])
6: i := i + 1
7: end if
8: end for
9: swap (a[i],a[j])

10: return i

Doan Nhat Quang Searching and Sorting Algorithms 43 / 44

Searching
Sorting

Elementary Sorting
Efficient Sorting

Conclusion

Complexity Comparison

Algorithm Best Average Worst Space

Quick Sort O(nlogn) O(nlogn) O(n2) O(logn)
Merge Sort O(nlogn) O(nlogn) O(nlogn) O(n)
Bubble Sort O(n) O(n2) O(n2) O(1)
Insertion Sort O(n) O(n2) O(n2) O(1)
Selection Sort O(n2) O(n2) O(n2) O(1)

Doan Nhat Quang Searching and Sorting Algorithms 44 / 44

	Searching
	Linear Search
	Binary Search

	Sorting
	Elementary Sorting
	Efficient Sorting

