
COMPLEX DATA TYPES

Lê Hồng Hải

UET-VNUH

2

Semi-Structured1

JSON2

XML3

Spatial Data4

Overview

3

Semi-Structured Data

 Many applications require storage of
complex data, whose schema changes
often

 The relational model’s requirement of
atomic data types may be an overkill

◼ E.g., storing set of interests as a set-valued
attribute of a user profile may be simpler than
normalizing it

4

Semi-Structured Data

 Data exchange can benefit greatly from
semi-structured data

◼ Exchange can be between applications, or
between back-end and front-end of an
application

◼ Web-services are widely used today, with
complex data fetched to the front-end and
displayed using a mobile app or JavaScript

 JSON and XML are widely used semi-
structured data models

5

Nested Data Types

 Hierarchical data is common in many
applications

 JSON: JavaScript Object Notation

◼ Widely used today

 XML: Extensible Markup Language

◼ Earlier generation notation, still used
extensively

6

JSON as an XML Alternative

 JSON is a light-weight alternative to XML

for data-interchange

 JSON = JavaScript Object Notation

◼ It’s really language independent

◼ most programming languages can easily read it

and instantiate objects or some other data

structure

 Defined in RFC 4627

 Started gaining tracking ~2006 and now

widely used

http://tools.ietf.org/html/rfc4627

7

Example

{"firstName": "John",

 "lastName" : "Smith",

 "age" : 25,

 "address" :

 {"streetAdr” : "21 2nd Street",

 "city" : "New York",

 "state" : "NY",

 ”zip" : "10021"},

 "phoneNumber":

 [{"type" : "home",

 "number": "212 555-1234"},

 {"type" : "fax",

 "number” : "646 555-4567"}]

 }

⚫ This is a JSON object

with five key-value pairs

⚫ Objects are wrapped by

curly braces

⚫ There are no object IDs

⚫ Keys are strings

⚫ Values are numbers,

strings, objects or

arrays

⚫ Arrays are wrapped by

square brackets

8

The BNF is simple

9

Evaluation

 JSON is simpler than XML and more
compact

◼ No closing tags, but if you compress XML and
JSON the difference is not so great

◼ XML parsing is hard because of its complexity

 JSON has a better fit for OO systems than
XML

 JSON is not as extensible as XML

 Preferred for simple data exchange by
many

 Less syntax, no semantics

10

XML Example

10

11

Well-Form XML Documents

 An XML document is well-formed, if its structure
meets the XML specification

 A well-formed XML document exhibits a tree-like
structure, and can be processed by an XML
processor

12

XML Documents are Trees

13

Example of Data in XML

 <purchase order>
<identifier> P-101 </identifier>
<purchaser>

<name> Cray Z. Coyote </name>
<address> Route 66, Mesa Flats, Arizona 86047, USA
</address>

</purchaser>
<supplier>

<name> Acme Supplies </name>
<address> 1 Broadway, New York, NY, USA </address>

</supplier>
<itemlist>

<item>
<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>

</item>
<item>…</item>

</itemlist>
<total cost> 429.85 </total cost>
….

</purchase order>

14

Object Orientation

 Object-relational data model provides
richer type system

◼ with complex data types and object orientation

 Applications are often written in object-
oriented programming languages

◼ Type system does not match relational type
system

◼ Switching between imperative language and
SQL is troublesome

 Approaches for integrating object-
orientation with databases

15

Spatial Data

 Spatial databases store information related
to spatial locations, and support efficient
storage, indexing and querying of spatial
data.

◼ Geographic data -- road maps, land-usage
maps, topographic elevation maps, political
maps showing boundaries, land-ownership
maps, and so on.

◼ Geometric data: design information about
how objects are constructed . For example,
designs of buildings, aircraft, layouts of
integrated-circuits.

 2 or 3 dimensional Euclidean space with (X, Y, Z)
coordinates

16

Representation of Geometric Constructs

17

Spatial Queries

 Region queries deal with spatial regions. e.g.,
ask for objects that lie partially or fully inside a
specified region

◼ E.g., PostGIS ST_Contains(), ST_Overlaps(), …

 Nearness queries request objects that lie near a
specified location.

 Nearest neighbor queries, given a point or an
object, find the nearest object that satisfies given
conditions.

 Spatial graph queries request information
based on spatial graphs

◼ E.g., shortest path between two points via a road
network

 ..

NOTES IN PROGRAMMING

WITH DB

19

Application Architecture

20

Application Architectures

 Application layers

◼ Presentation or user interface

 model-view-controller (MVC) architecture

▪ model: business logic

▪ view: presentation of data, depends on display device

▪ controller: receives events, executes actions, and returns
a view to the user

◼ business-logic layer

 provides high level view of data and actions on data

▪ often using an object data model

 hides details of data storage schema

◼ data access layer

 interfaces between business logic layer and the underlying
database

 provides mapping from object model of business layer to
relational model of database

21

Web Services

 Allow data on Web to be accessed using
remote procedure call mechanism

 Two approaches are widely used

◼ Representation State Transfer (REST):
allows use of standard HTTP request to a URL
to execute a request and return data

 Returned data is encoded either in XML, or in
JavaScript Object Notation (JSON)

◼ Big Web Services:

 Uses XML representation for sending request data, as
well as for returning results

 Standard protocol layer built on top of HTTP

22

SQL Injection

 Suppose query is constructed using

◼ "select * from instructor where name = ’" + name + "’"

 Suppose the user, instead of entering a name, enters:

◼ X’ or ’Y’ = ’Y

 then the resulting statement becomes:

◼ "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" +
"’"

◼ which is:

 select * from instructor where name = ’X’ or ’Y’ = ’Y’

◼ User could have even used

 X’; update instructor set salary = salary + 10000; --

 Prepared statement internally uses:
"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’

 Always use prepared statements, with user inputs as
parameters

23

OWASP TOP 10 2021 (The Open Worldwide Application Security Project)

24

PreparedStatementin JDBC

pstmt = conn.prepareStatement("insert into books

values (?, ?, ?, ?, ?)"); // Five parameters 1 to 5

pstmt.setInt(1, 3001); // Set values for parameters 1

to 5 pstmt.setString(2, "Mahjong 101");

pstmt.setString(3, "Kumar");

pstmt.setDouble(4, 88.88);

pstmt.setInt(5, 88);

int rowAffected = pstmt.executeUpdate();

24

25

PreparedStatementin JDBC

 A PreparedStatement is a pre-compiled SQL statement
that is more efficient than calling the
same Statement over and over. In
a PreparedStatement, '?' indicates a place holder for
parameter

 A set of setXxx(placeHolderNumber, value) methods
can be used to fill in the parameters

 Prevent SQLInjection

25

26

JDBC Transaction Example

Connection conn = null;

Statement stmt = null;

try {

conn = DriverManager.getConnection(

"jdbc:mysql://127.0.0.1:8888/ebookshop", "myuser", "xxxx"); //

MySQL stmt = conn.createStatement();

conn.setAutoCommit(false); // Issue two INSERT statements

stmt.executeUpdate("INSERT INTO books VALUES (5501, 'Peter', 'Mahjong

101', 5.5, 5)");

// Duplicate primary key, which triggers a SQLException

stmt.executeUpdate("INSERT INTO books VALUES (5501, 'Peter', 'More

Mahjong', 6.6, 6)");

conn.commit(); // Commit changes only if all statements succeed.

} catch(SQLException ex) {

 System.out.println("-- Rolling back changes --");

 conn.rollback(); // Rollback to the last commit.

ex.printStackTrace();

} finally { // Step 5: Free resources

 if (stmt != null) stmt.close();

 if (conn != null) conn.close();

}

27

Handling Errors with Exceptions

 Programs should recover and leave the database
in a consistent state.

 If a statement in the try block throws an
exception or warning, it can be caught in one of
the corresponding catch statements

 E.g., you could rollback your transaction in a
catch { …} block or close database connection
and free database related resources in finally {…}
block

27

28

Object-Relational Mapping

 Allows application code to be written on top of
object-oriented data model, while storing data
in a traditional relational database

 Schema designer has to provide a mapping
between object data and relational schema

◼ E.g., Java class Student mapped to relation
student, with corresponding mapping of
attributes

◼ An object can map to multiple tuples in
multiple relations

 Query can be run to retrieve objects satisfying
specified predicates

29

Object-Relational Mapping

30

Object-Relational Mapping and Hibernate (Cont.)

 The Hibernate object-relational mapping
system is widely used

◼ Public domain system, runs on a variety of
database systems

◼ Supports a query language that can express
complex queries involving joins

 Translates queries into SQL queries

◼ Allows relationships to be mapped to sets
associated with objects

 E.g., courses taken by a student can be a set in
Student object

31

Hibernate ORM

 https://www.geeksforgeeks.org/hibernate-
example-using-jpa-and-mysql/

32

Object-Relational Mapping and Hibernate (Cont.)

 The Entity Data Model developed by
Microsoft

◼ Provides an entity-relationship model directly
to application

◼ Maps data between entity data model and
underlying storage, which can be relational

◼ Entity SQL language operates directly on Entity
Data Model

THANKS YOU

	Slide 1: Complex Data Types
	Slide 2: Overview
	Slide 3: Semi-Structured Data
	Slide 4: Semi-Structured Data
	Slide 5: Nested Data Types
	Slide 6: JSON as an XML Alternative
	Slide 7: Example
	Slide 8: The BNF is simple
	Slide 9: Evaluation
	Slide 10: XML Example
	Slide 11: Well-Form XML Documents
	Slide 12: XML Documents are Trees
	Slide 13: Example of Data in XML
	Slide 14: Object Orientation
	Slide 15: Spatial Data
	Slide 16: Representation of Geometric Constructs
	Slide 17: Spatial Queries
	Slide 18: Notes In Programming With DB
	Slide 19: Application Architecture
	Slide 20: Application Architectures
	Slide 21: Web Services
	Slide 22: SQL Injection
	Slide 23: OWASP TOP 10 2021 (The Open Worldwide Application Security Project)
	Slide 24: PreparedStatement in JDBC
	Slide 25: PreparedStatement in JDBC
	Slide 26: JDBC Transaction Example
	Slide 27: Handling Errors with Exceptions
	Slide 28: Object-Relational Mapping
	Slide 29: Object-Relational Mapping
	Slide 30: Object-Relational Mapping and Hibernate (Cont.)
	Slide 31: Hibernate ORM
	Slide 32: Object-Relational Mapping and Hibernate (Cont.)
	Slide 33: Thanks you

