
COMPLEX DATA TYPES

Lê Hồng Hải

UET-VNUH

2

Semi-Structured1

JSON2

XML3

Spatial Data4

Overview

3

Semi-Structured Data

 Many applications require storage of
complex data, whose schema changes
often

 The relational model’s requirement of
atomic data types may be an overkill

◼ E.g., storing set of interests as a set-valued
attribute of a user profile may be simpler than
normalizing it

4

Semi-Structured Data

 Data exchange can benefit greatly from
semi-structured data

◼ Exchange can be between applications, or
between back-end and front-end of an
application

◼ Web-services are widely used today, with
complex data fetched to the front-end and
displayed using a mobile app or JavaScript

 JSON and XML are widely used semi-
structured data models

5

Nested Data Types

 Hierarchical data is common in many
applications

 JSON: JavaScript Object Notation

◼ Widely used today

 XML: Extensible Markup Language

◼ Earlier generation notation, still used
extensively

6

JSON as an XML Alternative

 JSON is a light-weight alternative to XML

for data-interchange

 JSON = JavaScript Object Notation

◼ It’s really language independent

◼ most programming languages can easily read it

and instantiate objects or some other data

structure

 Defined in RFC 4627

 Started gaining tracking ~2006 and now

widely used

http://tools.ietf.org/html/rfc4627

7

Example

{"firstName": "John",

 "lastName" : "Smith",

 "age" : 25,

 "address" :

 {"streetAdr” : "21 2nd Street",

 "city" : "New York",

 "state" : "NY",

 ”zip" : "10021"},

 "phoneNumber":

 [{"type" : "home",

 "number": "212 555-1234"},

 {"type" : "fax",

 "number” : "646 555-4567"}]

 }

⚫ This is a JSON object

with five key-value pairs

⚫ Objects are wrapped by

curly braces

⚫ There are no object IDs

⚫ Keys are strings

⚫ Values are numbers,

strings, objects or

arrays

⚫ Arrays are wrapped by

square brackets

8

The BNF is simple

9

Evaluation

 JSON is simpler than XML and more
compact

◼ No closing tags, but if you compress XML and
JSON the difference is not so great

◼ XML parsing is hard because of its complexity

 JSON has a better fit for OO systems than
XML

 JSON is not as extensible as XML

 Preferred for simple data exchange by
many

 Less syntax, no semantics

10

XML Example

10

11

Well-Form XML Documents

 An XML document is well-formed, if its structure
meets the XML specification

 A well-formed XML document exhibits a tree-like
structure, and can be processed by an XML
processor

12

XML Documents are Trees

13

Example of Data in XML

 <purchase order>
<identifier> P-101 </identifier>
<purchaser>

<name> Cray Z. Coyote </name>
<address> Route 66, Mesa Flats, Arizona 86047, USA
</address>

</purchaser>
<supplier>

<name> Acme Supplies </name>
<address> 1 Broadway, New York, NY, USA </address>

</supplier>
<itemlist>

<item>
<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>

</item>
<item>…</item>

</itemlist>
<total cost> 429.85 </total cost>
….

</purchase order>

14

Object Orientation

 Object-relational data model provides
richer type system

◼ with complex data types and object orientation

 Applications are often written in object-
oriented programming languages

◼ Type system does not match relational type
system

◼ Switching between imperative language and
SQL is troublesome

 Approaches for integrating object-
orientation with databases

15

Spatial Data

 Spatial databases store information related
to spatial locations, and support efficient
storage, indexing and querying of spatial
data.

◼ Geographic data -- road maps, land-usage
maps, topographic elevation maps, political
maps showing boundaries, land-ownership
maps, and so on.

◼ Geometric data: design information about
how objects are constructed . For example,
designs of buildings, aircraft, layouts of
integrated-circuits.

 2 or 3 dimensional Euclidean space with (X, Y, Z)
coordinates

16

Representation of Geometric Constructs

17

Spatial Queries

 Region queries deal with spatial regions. e.g.,
ask for objects that lie partially or fully inside a
specified region

◼ E.g., PostGIS ST_Contains(), ST_Overlaps(), …

 Nearness queries request objects that lie near a
specified location.

 Nearest neighbor queries, given a point or an
object, find the nearest object that satisfies given
conditions.

 Spatial graph queries request information
based on spatial graphs

◼ E.g., shortest path between two points via a road
network

 ..

NOTES IN PROGRAMMING

WITH DB

19

Application Architecture

20

Application Architectures

 Application layers

◼ Presentation or user interface

 model-view-controller (MVC) architecture

▪ model: business logic

▪ view: presentation of data, depends on display device

▪ controller: receives events, executes actions, and returns
a view to the user

◼ business-logic layer

 provides high level view of data and actions on data

▪ often using an object data model

 hides details of data storage schema

◼ data access layer

 interfaces between business logic layer and the underlying
database

 provides mapping from object model of business layer to
relational model of database

21

Web Services

 Allow data on Web to be accessed using
remote procedure call mechanism

 Two approaches are widely used

◼ Representation State Transfer (REST):
allows use of standard HTTP request to a URL
to execute a request and return data

 Returned data is encoded either in XML, or in
JavaScript Object Notation (JSON)

◼ Big Web Services:

 Uses XML representation for sending request data, as
well as for returning results

 Standard protocol layer built on top of HTTP

22

SQL Injection

 Suppose query is constructed using

◼ "select * from instructor where name = ’" + name + "’"

 Suppose the user, instead of entering a name, enters:

◼ X’ or ’Y’ = ’Y

 then the resulting statement becomes:

◼ "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" +
"’"

◼ which is:

 select * from instructor where name = ’X’ or ’Y’ = ’Y’

◼ User could have even used

 X’; update instructor set salary = salary + 10000; --

 Prepared statement internally uses:
"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’

 Always use prepared statements, with user inputs as
parameters

23

OWASP TOP 10 2021 (The Open Worldwide Application Security Project)

24

PreparedStatementin JDBC

pstmt = conn.prepareStatement("insert into books

values (?, ?, ?, ?, ?)"); // Five parameters 1 to 5

pstmt.setInt(1, 3001); // Set values for parameters 1

to 5 pstmt.setString(2, "Mahjong 101");

pstmt.setString(3, "Kumar");

pstmt.setDouble(4, 88.88);

pstmt.setInt(5, 88);

int rowAffected = pstmt.executeUpdate();

24

25

PreparedStatementin JDBC

 A PreparedStatement is a pre-compiled SQL statement
that is more efficient than calling the
same Statement over and over. In
a PreparedStatement, '?' indicates a place holder for
parameter

 A set of setXxx(placeHolderNumber, value) methods
can be used to fill in the parameters

 Prevent SQLInjection

25

26

JDBC Transaction Example

Connection conn = null;

Statement stmt = null;

try {

conn = DriverManager.getConnection(

"jdbc:mysql://127.0.0.1:8888/ebookshop", "myuser", "xxxx"); //

MySQL stmt = conn.createStatement();

conn.setAutoCommit(false); // Issue two INSERT statements

stmt.executeUpdate("INSERT INTO books VALUES (5501, 'Peter', 'Mahjong

101', 5.5, 5)");

// Duplicate primary key, which triggers a SQLException

stmt.executeUpdate("INSERT INTO books VALUES (5501, 'Peter', 'More

Mahjong', 6.6, 6)");

conn.commit(); // Commit changes only if all statements succeed.

} catch(SQLException ex) {

 System.out.println("-- Rolling back changes --");

 conn.rollback(); // Rollback to the last commit.

ex.printStackTrace();

} finally { // Step 5: Free resources

 if (stmt != null) stmt.close();

 if (conn != null) conn.close();

}

27

Handling Errors with Exceptions

 Programs should recover and leave the database
in a consistent state.

 If a statement in the try block throws an
exception or warning, it can be caught in one of
the corresponding catch statements

 E.g., you could rollback your transaction in a
catch { …} block or close database connection
and free database related resources in finally {…}
block

27

28

Object-Relational Mapping

 Allows application code to be written on top of
object-oriented data model, while storing data
in a traditional relational database

 Schema designer has to provide a mapping
between object data and relational schema

◼ E.g., Java class Student mapped to relation
student, with corresponding mapping of
attributes

◼ An object can map to multiple tuples in
multiple relations

 Query can be run to retrieve objects satisfying
specified predicates

29

Object-Relational Mapping

30

Object-Relational Mapping and Hibernate (Cont.)

 The Hibernate object-relational mapping
system is widely used

◼ Public domain system, runs on a variety of
database systems

◼ Supports a query language that can express
complex queries involving joins

 Translates queries into SQL queries

◼ Allows relationships to be mapped to sets
associated with objects

 E.g., courses taken by a student can be a set in
Student object

31

Hibernate ORM

 https://www.geeksforgeeks.org/hibernate-
example-using-jpa-and-mysql/

32

Object-Relational Mapping and Hibernate (Cont.)

 The Entity Data Model developed by
Microsoft

◼ Provides an entity-relationship model directly
to application

◼ Maps data between entity data model and
underlying storage, which can be relational

◼ Entity SQL language operates directly on Entity
Data Model

THANKS YOU

	Slide 1: Complex Data Types
	Slide 2: Overview
	Slide 3: Semi-Structured Data
	Slide 4: Semi-Structured Data
	Slide 5: Nested Data Types
	Slide 6: JSON as an XML Alternative
	Slide 7: Example
	Slide 8: The BNF is simple
	Slide 9: Evaluation
	Slide 10: XML Example
	Slide 11: Well-Form XML Documents
	Slide 12: XML Documents are Trees
	Slide 13: Example of Data in XML
	Slide 14: Object Orientation
	Slide 15: Spatial Data
	Slide 16: Representation of Geometric Constructs
	Slide 17: Spatial Queries
	Slide 18: Notes In Programming With DB
	Slide 19: Application Architecture
	Slide 20: Application Architectures
	Slide 21: Web Services
	Slide 22: SQL Injection
	Slide 23: OWASP TOP 10 2021 (The Open Worldwide Application Security Project)
	Slide 24: PreparedStatement in JDBC
	Slide 25: PreparedStatement in JDBC
	Slide 26: JDBC Transaction Example
	Slide 27: Handling Errors with Exceptions
	Slide 28: Object-Relational Mapping
	Slide 29: Object-Relational Mapping
	Slide 30: Object-Relational Mapping and Hibernate (Cont.)
	Slide 31: Hibernate ORM
	Slide 32: Object-Relational Mapping and Hibernate (Cont.)
	Slide 33: Thanks you

