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Semi-Structured Data

 Many applications require storage of 
complex data, whose schema changes 
often

 The relational model’s requirement of 
atomic data types may be an overkill

◼ E.g., storing set of interests as a set-valued 
attribute of a user profile may be simpler than 
normalizing it



4

Semi-Structured Data

  Data exchange can benefit greatly from 
semi-structured data

◼ Exchange can be between applications, or 
between back-end and front-end of an 
application

◼ Web-services are widely used today, with 
complex data fetched to the front-end and 
displayed using a mobile app or JavaScript

 JSON and XML are widely used semi-
structured data models
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Nested Data Types

 Hierarchical data is common in many 
applications

 JSON: JavaScript Object Notation

◼ Widely used today

 XML: Extensible Markup Language

◼ Earlier generation notation, still used 
extensively
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JSON as an XML Alternative

 JSON is a light-weight alternative to XML 

for data-interchange

 JSON = JavaScript Object Notation

◼ It’s really language independent

◼ most programming languages can easily read it 

and instantiate objects or some other data 

structure

 Defined in RFC 4627

 Started gaining tracking ~2006 and now 

widely used

http://tools.ietf.org/html/rfc4627
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Example

{"firstName": "John",

 "lastName" : "Smith",

 "age"          : 25,

 "address"   :

    {"streetAdr” : "21 2nd Street",

      "city"         : "New York",

      "state"       : "NY",

      ”zip"          : "10021"},

 "phoneNumber":

    [{"type"  : "home",

      "number": "212 555-1234"},

     {"type"  : "fax",

      "number” : "646 555-4567"}]

 }

⚫ This is a JSON object 

with five key-value pairs

⚫ Objects are wrapped by 

curly braces

⚫ There are no object IDs

⚫ Keys are strings

⚫ Values are numbers, 

strings, objects or 

arrays

⚫ Arrays are wrapped by 

square brackets
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The BNF is simple 
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Evaluation

 JSON is simpler than XML and more 
compact

◼ No closing tags, but if you compress XML and 
JSON the difference is not so great

◼ XML parsing is hard because of its complexity

 JSON has a better fit for OO systems than 
XML

 JSON is not as extensible as XML

 Preferred for simple data exchange by 
many

 Less syntax, no semantics
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XML Example

10
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Well-Form XML Documents

 An XML document is well-formed, if its structure 
meets the XML specification

 A well-formed XML document exhibits a tree-like 
structure, and can be processed by an XML 
processor
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XML Documents are Trees
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Example of Data in XML

 <purchase order>
<identifier> P-101 </identifier>
<purchaser>

<name> Cray Z. Coyote </name>
<address> Route 66, Mesa Flats, Arizona 86047, USA 
</address>

</purchaser>
<supplier>

<name> Acme Supplies </name>
<address> 1 Broadway, New York, NY, USA </address>

</supplier>
<itemlist>

<item>
<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>

</item>
<item>…</item>

</itemlist>
<total cost> 429.85 </total cost>
….

</purchase order>
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Object Orientation

 Object-relational data model provides 
richer type system 

◼ with complex data types and object orientation

 Applications are often written in object-
oriented programming languages

◼ Type system does not match relational type 
system

◼ Switching between imperative language and 
SQL is troublesome

 Approaches for integrating object-
orientation with databases
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Spatial Data

 Spatial databases store information related 
to spatial locations, and support efficient 
storage, indexing and querying of spatial 
data.

◼ Geographic data -- road maps, land-usage 
maps, topographic elevation maps, political 
maps showing boundaries, land-ownership 
maps, and so on.  

◼ Geometric data: design information about 
how objects are constructed . For example, 
designs of buildings, aircraft, layouts of 
integrated-circuits.  

 2 or 3 dimensional Euclidean space with (X, Y, Z) 
coordinates
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Representation of Geometric Constructs
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Spatial Queries

 Region queries deal with spatial regions. e.g., 
ask for objects that lie partially or fully inside a 
specified region

◼ E.g., PostGIS  ST_Contains(), ST_Overlaps(), …

 Nearness queries request objects that lie near a 
specified location.

 Nearest neighbor queries, given a point or an 
object, find the nearest object that satisfies given 
conditions.

 Spatial graph queries request information 
based on spatial graphs

◼ E.g., shortest path between two points via a road 
network 

 ..



NOTES IN PROGRAMMING 

WITH DB
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Application Architecture
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Application Architectures

 Application layers

◼ Presentation or user interface

 model-view-controller (MVC) architecture

▪ model: business logic

▪ view: presentation of data, depends on display device

▪ controller: receives events, executes actions, and returns 
a view to the user

◼ business-logic layer 

 provides high level view of data and actions on data

▪ often using an object data model

 hides details of data storage schema

◼ data access layer

 interfaces between business logic layer and the underlying 
database

 provides mapping from object model of business layer to 
relational model of database
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Web Services

 Allow data on Web to be accessed using 
remote procedure call mechanism

 Two approaches are widely used

◼ Representation State Transfer (REST): 
allows use of standard HTTP request to a URL 
to execute a request and return data

 Returned data is encoded either in XML, or in 
JavaScript Object Notation (JSON) 

◼ Big Web Services: 

 Uses XML representation for sending request data, as 
well as for returning results

 Standard protocol layer built on top of HTTP
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SQL Injection

 Suppose query is constructed using

◼ "select * from instructor where name = ’" + name + "’"

 Suppose the user, instead of entering a name, enters:

◼ X’ or ’Y’ = ’Y

 then the resulting statement becomes:

◼ "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + 
"’"

◼ which is:

 select * from instructor where name = ’X’ or ’Y’ = ’Y’

◼ User could have even used

 X’; update instructor set salary = salary + 10000; --

 Prepared statement internally uses:
"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’

 Always use prepared statements, with user inputs as 
parameters
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OWASP TOP 10 2021 (The Open Worldwide Application Security Project)
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PreparedStatementin JDBC

pstmt = conn.prepareStatement( "insert into books 

values (?, ?, ?, ?, ?)"); // Five parameters 1 to 5 

pstmt.setInt(1, 3001); // Set values for parameters 1 

to 5 pstmt.setString(2, "Mahjong 101"); 

pstmt.setString(3, "Kumar"); 

pstmt.setDouble(4, 88.88); 

pstmt.setInt(5, 88); 

int rowAffected = pstmt.executeUpdate(); 

24
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PreparedStatementin JDBC

 A PreparedStatement is a pre-compiled SQL statement 
that is more efficient than calling the 
same Statement over and over. In 
a PreparedStatement, '?' indicates a place holder for 
parameter

 A set of setXxx(placeHolderNumber, value) methods 
can be used to fill in the parameters

 Prevent SQLInjection

25
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JDBC Transaction Example

Connection conn = null; 

Statement stmt = null; 

try { 

conn = DriverManager.getConnection( 

"jdbc:mysql://127.0.0.1:8888/ebookshop", "myuser", "xxxx"); // 

MySQL stmt = conn.createStatement(); 

conn.setAutoCommit(false); // Issue two INSERT statements 

stmt.executeUpdate("INSERT INTO books VALUES (5501, 'Peter', 'Mahjong 

101', 5.5, 5)"); 

// Duplicate primary key, which triggers a SQLException 

stmt.executeUpdate("INSERT INTO books VALUES (5501, 'Peter', 'More 

Mahjong', 6.6, 6)"); 

conn.commit(); // Commit changes only if all statements succeed. 

} catch(SQLException ex) { 

 System.out.println("-- Rolling back changes --"); 

 conn.rollback(); // Rollback to the last commit. 

ex.printStackTrace(); 

} finally { // Step 5: Free resources 

 if (stmt != null) stmt.close(); 

 if (conn != null) conn.close(); 

}
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Handling Errors with Exceptions

 Programs should recover and leave the database 
in a consistent state. 

 If a statement in the try block throws an 
exception or warning, it can be caught in one of 
the corresponding catch statements

 E.g., you could rollback your transaction in a 
catch { …}  block or close database connection 
and free database related resources in finally {…} 
block

27
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Object-Relational Mapping

 Allows application code to be written on top of 
object-oriented data model, while storing data 
in a traditional relational database

 Schema designer has to provide a mapping 
between object data and relational schema

◼ E.g., Java class Student mapped to relation 
student, with corresponding mapping of 
attributes

◼ An object can map to multiple tuples in 
multiple relations

 Query can be run to retrieve objects satisfying 
specified predicates
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Object-Relational Mapping



30

Object-Relational Mapping and Hibernate (Cont.)

 The Hibernate object-relational mapping 
system is widely used

◼ Public domain system, runs on a variety of 
database systems

◼ Supports a query language that can express 
complex queries involving joins

 Translates queries into SQL queries

◼ Allows relationships to be mapped to sets 
associated with objects

 E.g., courses taken by a student can be a set in 
Student object
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Hibernate ORM 

 https://www.geeksforgeeks.org/hibernate-
example-using-jpa-and-mysql/
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Object-Relational Mapping and Hibernate (Cont.)

 The Entity Data Model developed by 
Microsoft

◼ Provides an entity-relationship model directly 
to application

◼ Maps data between entity data model and 
underlying storage, which can be relational

◼ Entity SQL language operates directly on Entity 
Data Model
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