

COURSE SYLLABUS

Subject: Electrical Circuits II

Academic field: Energy/ Electrical Engineering

Lecturer: Dr. Nguyen Xuan Truong

Phone: 0968-456-006

E-mail: <u>nguyen-xuan.truong@usth.edu.vn</u>

Academic year: 2019-2020

COURSE DESCRIPTION

Credit points	04				
Level	Undergraduate				
Teaching time Location	University of Science and Technology of Hanoi				
	Lecture	30 hrs			
Time Commitment	Exercises	10 hrs			
Time Commitment	Practice	8 hrs			
	Total	48 hrs			
Prerequisites	Electrical Circuits I, Calculus				
Recommended background knowledge	Knowledge of physics; Differential Equations, General mathematics				
Course description:	 Alternating Current (AC) electrical circuits AC Steady-State Circuits Analysis Power in AC Circuits Three-Phase Circuits Laplace Transform Circuit Analysis in the s-Domain 				
Course objectives	 To know the single-phase sinusoidal circuit behaviour To know the average & complex power in single-phase sinusoidal circuits To be familiar with the balanced three-phase circuit analysis To be familiar with the Laplace transform To be able to solve circuits applying the Laplace transform To be able to apply Differential Equation Approach and Laplace method to determine transient response of second order circuits 				

Course Learning Outcomes(LO)	 Having successfully completed this course, students will be able: To analyze single-phase sinusoidal circuits To claculate the average and complex power in single-phase sinusoidal circuits To analyze balanced three-phase circuits applying single-phase equivalent circuit To find the functional and operational Laplace transform of different functions To apply the Laplace transform in electric circuit analysis 					
	Attendance/Attitude	10 %				
Evaluation	Practical/ Exercises	20 %				
	Midterm Exam	30 %				
	Final exam	40 %				
Prescribed Textbook(s)	 J. David Irwin, R. Mark Nelms, Basic Engineering Circuit Analysis, 2008 John Wiley & Sons Inc. John O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, Second edition, McGraw-Hill 					

EXPERIMENTAL COURSE CONTENTS

Laboratory 1: Which effect does a diode have in an AC electric circuit?

Laboratory 2: RLC Circuit (impedance of parallel and series tuned circuits as a function of frequency; phase displacement between current and voltage for the series tuned circuit);

Laboratory 3: RLC measuring bridge (Wheatstone bridge circuit operated on AC)

Lecture notes: https://moodle.usth.edu.vn/course/view.php?id=337

University of Science and Technology of Hanoi Address: A21 Bldg, N°18 Hoang Quoc Viet, Cau Giay, Hanoi Telephone/ Fax: +84-4 37 91 69 60 Email: <u>officeusth@usth.edu.vn</u>

Website: http://www.usth.edu.vn

COURSE CONTENTS & SCHEDULE

Lect ure		Hours			
	Contents	Le ct.	Ex r.	Pr c.	Assignment(s)
1	INTRODUCTION 1.1. Sinusoids 1.2. Circuit theorems in Sinusoidal Steady- State Analysis 1.3. Phasor - Domain Circuit 1.4. Phasor - Diagrams	3.5	3.5		
2	AC STEADY-STATE CIRCUITS ANALYSIS 2.1. Nodal method 2.2. Mesh method 2.3. Superposition 2.4. Source Transformation 2.5. Thevenin, Norton equivalent circuits	3	3		
3	 POWER IN AC CIRCUITS 3.1. Introduction 3.2. Circuit Power Absorption 3.3. Wattmeters 3.4. Reactive Power 3.5. Complex Power and Apparent Power 	4	4		
4	Midterm	1			
5	 THREE-PHASE CIRCUITS 4.1. Introduction 4.2. Three-Phase Connections 4.3. Balanced Circuits 4.4. Power in the balanced circuits 4.5. Three-Phase Power Measurements 	4	4		
6	 THE LAPLACE TRANSFORM 5.1. Definition 5.2. Two Important Singularity Functions 5.3. Transform Pairs 5.4. Properties of the Transform 5.5. Inverse Transform 5.6. Convolution Integral 5.7. Initial-Value and Final-Value Theorems APPLICATION OF THE LAPLACE TRANSFORM TO CIRCUIT ANALYSIS 	3 3.5	3		
7	6.1. Laplace Circuit Solutions6.2. Circuit Element Models				

	6.3. Analysis Techniques6.4. Transfer Function6.5. Poles-Zero Plot/Bode Plot Connection6.6. Steady-State Response			
8	 LABS 7.1. Laboratory 1: Which effect does a diode have in an AC electric circuit? 7.2. Laboratory 2: RLC Circuit (impedance of parallel and series tuned circuits as a function of frequency; phase displacement between current and voltage for the series tuned circuit) 7.3. Laboratory 3: RLC measuring bridge (Wheatstone bridge circuit operated on AC) 		6	2

Notes:

- Abbreviation: Lect. (lecture), Exr. (Exercise), Prc. (Practise).
- Exercises may include assignment, reports, student's presentation, homework, class exercises ... for each class sessions
- Practicals mostly refer to Lab- work or outside practice such as field trip.

Reference Literature:

- [1] J. David Irwin, R. Mark Nelms, **Basic Engineering Circuit Analysis**, 2008 John Wiley & Sons Inc.
- [2] John O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, Second edition, McGraw-Hill
- [3] Charles K. Alexander, Matthew N. O. Sadiku, Fundamentals of Electric Circuit, fifth edition, McGraw-Hill