
ADVANCED DATABASE

Performance tuning

Dr. NGUYEN Hoang Ha

Email: nguyen-hoang.ha@usth.edu.vn

“THE RIGHT THING AT A WRONG TIME

IS A WRONG THING”
Joshua Harris (2012).

“I Kissed Dating Goodbye: A New Attitude Toward Relationships and Romance”

3

Agenda

I. Overview

II. Diagnostic

III. System and Hardware

IV. Design strategies

V. Index use

VI. Programming techniques

1. OVERVIEW

5

Needs vs Problems

 Needs

 More business → Higher speed

 More concurrent users → Less resource consumption per user

 Problems
A Constantly-changing Environment

6

Problems

Data Growth

Response

time

Throughput

7

Goals

 The all-encompassing goal of the computer industry is speed

→Make a set of DB applications execute faster

 Definition: DB performance tuning is a set activities and
procedure to optimize:

 Response time

 Throughput

 What we should do?

 Make queries run faster

 Make updates run faster

 Minimize congestion due to concurrency

 Facts:

 Functional SQL → not difficult

 Write efficient, high performance SQLs → harder

8

What affects performance

 SQL statements

 Indexes

 DB design

 Server settings

 OS

 Hardware

Application

programmers

Business analysist,

data architect,

…

DBA,

tuner

9

Possible causes

 Weak hardware

 Lack of proper and meaningful

maintenance

 Poor monitoring and scheduling etc..

 Bad server settings

 Applications

 Poor design

 Bad SQL statements

 By developers, users

Application Others

10

Rules of thumb

 Optimize the DB before upgrading the hardware

 Try to have good DB design and well written code

 Focus the optimization effort on the most frequently
run code, rather than the slowest code

 Focus on fixing the worst performing aspect of the
application first

 Keep a list of possible optimization ideas, even if
you do not have time to implement them now

 Spend time for using the application as a user

10

11

Tuning strategy

 Keep it Simple

 Small changes with low impact but with high

performance benefits

 Localized changes

 No change in logic

 Easy to understand, test and deploy

12

Fallacies

 Too busy now. I’ll do it later.

 I’m a Java or C# not an SQL, programmer.

 Is there optimizer tool is for?

 I don’t know how.

 Let tool generate SQL → hard to control.

 It works. I’ve got my data. I’m happy.

Tuning modes

Proactive

 Is planned

 Low time pressure

 No scope

 Sometimes no target

Reactive

 Cannot be planned

 High time pressure

 Scope limited to specific problems

 Clear target

▪When to tune?

▪At the time it is written

▪As the database changes

14

Considered factors

 Budgets

 Time frame

 Functional requirements

 Required performance

 Critical nature of the system to the core business

 Risks

 Acceptable

 Unacceptable

15

DB development good practice

Team Developers Process

Prepare

Write & Compile

Test Code

Debug

Code Review

Optimize SQL

US
Development

Team

HK
Development

Team

ZHA/SHA
Development

Team

Team Review

Scheduled

Code Review

Benchmark test

& SQL Scan

Manager

Management

Reporting

Bad Code or Problematic SQL Detected:
Return to Development

Pre-deployment

QA: Regression
Testing and
Scalability/

Performance
Tuning

Code Review
Successful

Production
DatabaseVersion

Control
(Team Coding)

16

Tuning process

Diagnostic

• Monitor

• Benchmark
Prescribe Change

Test

• Re-
benchmark

II. DIAGNOSTIC

18

Metric 1: Query cost

http://sqlvn.com/wp-content/uploads/QueryCost.jpg

19

Metric 2: Page reads

 Number of read pages

 SQL server: Page size = 8KB

 To see: put SET STATISTIC IO ON before the query

http://sqlvn.com/wp-content/uploads/PageReads.jpg

20

Metric 3: Query Execution Time

 How long a statement executes

 To see: put SET STATISTICS TIME ON before the statement

http://sqlvn.com/wp-content/uploads/ExecutionTime.jpg

21

Dynamic Management Views

 SQL Server counters

SELECT *

FROM sys.dm_os_performance_counters

 Sessions

 sys.dm_exec_sessions

 Connection

 sys.dm_exec_connections

 Mission indices

 Sys.dm_db_missing_index_group_stats

 Sys.dm_db_missing_index_groups

 Sys.dm_db_missing_index_details

 Sys.dm_db_missing_index_columns

22

Analyze query plan

 Index seek vs. Index Scan

23

Monitor tools: SQL Server Profiler

24

Monitor tools: Performance Monitor

25

I/O performance of system

 CrystalDiskMark

III. SYSTEM AND HARDWARE

27

Load Balanced Asynchronous Processing

 Scale up by distribution the system

 When real time analysis of large volumes of data is required, move

the calculations into a middle-tier

 Allow several servers to run the middle tier objects and

federate the data to be processed

Data

Application ServerApplication Server

Cache Cache

- Processing Engine
- Calculations

- Processing Engine
- Calculations

28

Mirrored Data

 Use techniques for mirroring data between n servers to

separate analysis transactions from OLTP transactions

 Techniques can include using replication and double commit

of transactions

Application ServerApplication Server

Cache Cache

- Processing Engine
- Calculation

- Processing Engine
- Calculations

Reporting

Data

Core

Data

29

Consequences of “Moore’s law” on Hardware

 Over the last decade:

 10x better access time

 10x more bandwidth

 100x more capacity

 4000x lower media price

 Scan takes 10x longer (3 min vs 45 min)

 Data on disk is accessed 25x less often (on average)

 → Consider upgrading RAM, Storage, CPU, Network

30

Data Flood

 Disk Sales double every nine months

 Because volume of stored data increases

 Data Warehouses

 Internet Logs

 Web Archives

 Sky Survey

 Because media price drops much faster than areal density.

Graph courtesy of Joe Hellerstein

Source: J. Porter, Disk/Trend, Inc.

http://www.disktrend.com/pdf/portrpkg.pdf

0

500

1000

1500

2000

2500

3000

3500

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

Year

P
e

ta
b

y
te

s

Sales

Moore's
Law

31

Magnetic Disks

 Access Time (2001)

 Controller overhead (0.2 ms)

 Seek Time (4 to 9 ms)

 Rotational Delay (2 to 6 ms)

 Read/Write Time (10 to 500 KB/ms)

 Disk Interface

 IDE (16 bits, Ultra DMA - 25 MHz)

 SCSI: width (narrow 8 bits vs. wide 16
bits) - frequency (Ultra3 - 80 MHz).

http://www.pcguide.com/ref/hdd/

32 32

RAID Levels

 RAID 0: striping (no redundancy)

 RAID 1: mirroring (2 disks)

 RAID 5: parity checking

 Read: stripes read from multiple disks (in parallel)

 Write: 2 reads + 2 writes

 RAID 10: striping and mirroring

 Software vs. Hardware RAID:

 Software RAID: run on the server’s CPU

 Hardware RAID: run on the RAID controller’s CPU

33

OS and software

 64-bit OS are suggested

 Keep updating OS and DBMS

 Proper level of firewall

 Antivirus

34

Server memory options

IV. DESIGN STRATEGY

36

DB design affects performance

 The foundation of an application is the database design. It

affects the type of queries

 Databases that are not properly normalized require

additional code to maintain data integrity.

 Databases that use composite primary keys require multiple

join condition.

 Database without comprehensive constraints require extra

codes to validate the data during data inputting

37

Guidelines

 Normalize the database to 3NF

 Don’t over-normalize or over-complicate the database. Keep
working until a simple and elegant design is found

 Avoid database designs that move data from table to table in
a transactional manner

 Use a data-driven database design rather than designs with
any hard-coded values

 Avoid temporary tables

 Design the DB schema with queries in mind.

 When necessary, do duplicate data from Normalized tables
to DeNormalized read-only tables for faster reading

38

Denormalization example

 Normalized

 Students (StudentID, FirstName, LastName….)

 Subjects (SubjectID, SubjectName). Suppose cardinality is 3

 Grades (StudentID, SubjectID, grade)

 → Join queries are expensive

 Denormalize Grades into 0NF

 Students (StudentID, FirstName, LastName….)

 Subjects (SubjectID, SubjectName)

 Grades (StudentID, Subject1, Subject2, Subject3)

39

Horizontal and Vertical partitioning

40

Recomposing with VIEW

CREATE VIEW Emp AS

SELECT E.*, P.Picture

FROM Employee E INNER JOIN EmployeePicture P

ON E.EmployeeID = P.EmployeeID

41

Recomposing with VIEW

CREATE VIEW Reports AS

SELECT * FROM January

UNION

SELECT * FROM February

UNION

SELECT * FROM March

42

Precomputed columns

 System takes time to compute aggregated, inferred values

 Eg: Purchasing.PurchaseOrderDetail of Adventure Works

 Use trigger to update precomputed columns

V. INDEX USE

44

Index Implementations in some major DBMS

 SQL Server

 B+Tree data structure

 Clustered indexes are sparse

 Indexes maintained as
updates/insertions/deletes are
performed

 DB2

 B+Tree data structure, spatial
extender for R-tree

 Clustered indexes are dense

 Explicit command for index
reorganization

 Oracle

 B+tree, hash, bitmap, spatial
extender for R-Tree

 clustered index

 Index organized table
(unique/clustered)

 Clusters used when creating
tables.

 TimesTen (In-memory DBMS)

 T-tree

EXEC sp_helpindex [table name] to list all indexes

45

Clustered Indexes

 In a clustered index, the actual data rows that comprise the

table are stored at the leaf level of the index

 The physical row order of the table and the order of rows in

the index are the same

→ Each table can have only one clustered index

 PK columns are good candidates for clustered indexes

46

Non-clustered index

 The Non-Clustered index is an index structure separate

from the data stored in a table

→A table can have more than one non-clustered index

 Non-clustered indexes are slower than clustered indexes

because the DMBS must follow a pointer to retrieve the

actual data row.

 The leaf nodes of a non-clustered index can optionally

contain values from non-indexed columns

47

Clustered vs. Nonclustered indexes

48

Using the FILLFACTOR Option

 Specifies how much to fill the page

 Impacts leaf-level pages
Data Pages Full

Con

Funk

White

Rudd

...

...

...

...

470401

470402

470403

470501

White ... 470502
Barr ... 470503

Akhtar

Funk

Smith

Martin

Smith

...

...

...

...

...

470601

470602

470603

470604

470701
Ota ... 470702

Martin

Phua

Jones

Smith

Ganio

...

...

...

...

...

470801

470802

470803

470804

470901
Jones ... 470902

Data Pages

50% Fillfactor

Con

Funk

White

...

...

...

470401

470402

470403

Rudd

White

Barr

...

...

...

470501

470502

470503

Akhtar

Funk

Smith

...

...

...

470601

470402

470603

Martin

Smith

Ota

...

...

...

470604

470701

470702

Martin

Phua

Jones

...

...

...

470801

470802

470803

Smith

Ganio

White

...

...

...

470804

470901

470902

49

Using the PAD_INDEX Option

 PAD_INDEX ON means applying FILLFACTOR to all

NonLeaf Level of B-tree

 Must use with FILLFACTOR option

50

Index selectivity

 Create every primary key as a non-clustered index

 Create a clustered index for every table.

 Primary tables: cluster the most common ORDER BY columns, don’t
cluster the primary key.

 Secondary tables: create a clustered index for the most important
foreign key

 Create non-clustered indexes for the columns of every
foreign key

 Create single-column index for every column referenced in
a WHERE clause or an ORDER BY clause

 If a table is heavily updated, index as few columns as possible

 If a table is updated rarely, use as many indexed columns as
necessary to achieve maximum query performance

51

Covering index

 An non-clustered index which can satisfy all requested

columns in a query without performing a further lookup

into the clustered index. → save time

 Non-clustered index can include some other columns so

that the query can fetch enough columns from the index

 Eg CREATE NONCLUSTERED INDEX IX_Person_RowGuid

ON Person.Person(rowguid) INCLUDE (FirstName,LastName)

52

Exploit index when available

Use AdventureWorks2014;

SELECT EmailAddress FROM Person.EmailAddress

WHERE EmailAddress LIKE 'b%'

SELECT EmailAddress FROM Person.EmailAddress

WHERE LEFT(EmailAddress,1) = 'b'

53

Data types cannot be indexed

 Image

 Varbinary(max)

 Text

 Ntext

 Varchar (max)

 Nvarchar(max)

Fulltext search

54

What is Fulltext search

 Allows searching for text/words in columns

 Similar words

 Plural of words

 Based on special index

 Full-text index (Full text catalog)

55

Full-text search Predicates

 CONTAINS: match words and phrases,

 CONTAINSTABLE

 Return a table Key

 Rank: 0 to 1000 shows how well the results match

DECLARE @SearchWord nvarchar(30)

SET @SearchWord = N'performance'

SELECT ProductDescriptionID, Description

FROM Production.ProductDescription

WHERE CONTAINS(Description, @SearchWord);

SELECT * FROM CONTAINSTABLE (Production.ProductDescription , [Description], @SearchWord)

 FREETEXT: match the meaning, but not the exact wording

 FREETEXTTABLE

56

SQL Server Fulltext Setup

 To check:

SELECT SERVERPROPERTY('IsFullTextInstalled’)

 Install Fulltext

57

Examples

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, N' FORMSOF (INFLECTIONAL, ride) ');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, N' FORMSOF (THESAURUS, ride) ');

Word proximity

NEAR (~)

How near words are in the text/document

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, N'mountain NEAR bike');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, N'mountain ~ bike');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, 'ISABOUT (mountain weight(.8), bikes weight (.2))');

58

Execution plan of Fulltext Search

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE [Description] LIKE N'%bike%';

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE FREETEXT(Description, N'bike');

59

FREETEXT vs. CONTAINS

60

Full-Text Search Terminologies

 Full-text index

 Information about words and their location in columns

 Used in full text queries

 Full-text catalog

 Group of full text indexes (Container)

 Token

 Word identified by word breaker

 Word breaker

 Tokenizes text based on language

61

Full-Text Search Terminologies (cont’)

 Stopwords/Stoplists

 not relevant word to search

 e.g. ‘and’, ‘a’, ‘is’ and ‘the’ in English

 Some languages without stop list supported

 Accent insensitivity

 cafè = cafe

62

Index vs. Full-text index

Full-text indexes Regular SQL Server indexes

Stored in the file system, but administered

through the database..
Stored under the control of the database in

which they are defined.

Only one full-text index allowed per table. Several regular indexes allowed per table.

Addition of data to full-text indexes, called

population, can be requested through either a

schedule or a specific request, or can occur

automatically with the addition of new data.

Updated automatically when the data upon

which they are based is inserted, updated, or

deleted.

63

Populating a Full-Text Index

 Full

 Read and process all rows

 Very resource-intensive

 Incremental

 Automatically populates the index for rows that were modified since the

last population

 Requires timestamp column

 Update

 Uses changes tracking from SQL Server (inserts, updates, and deletes)

 Specify how you want to propagate the changes to the index

 AUTO automatic processing

 MANUAL implement a manual method for processing changes

64

Disadvantages

 Full text catalogs

 Disk space

 Up-to-date

 Continuous updating → performance hit

 Queries

 Complicated to generate

 Generated as a string

65

Advantages

 Much more powerful than LIKE

 Specific

 Ranking

 Performance

 Pre-computed ranking (FREETEXTTABLE)

 Configurable Population Schedule

 Continuously track changes, or index when the CPU is idle

VI. PROGRAMMING TECHNIQUES

67

Some guidelines

 Exploit precompiled, loaded code

 Stored procedure, function

 Avoid Embedded SQL

 Avoid coding loops

 Minimal Use of Cursors

 Use set-based instead of row-based operations

 Row-based can be unknowingly implemented by:

 Cursors

 DTS Lookup

 Functions to perform lookups

68

Bad loop

for (int i = 0; i < 1000; i++)

{

SqlCommand cmd = new SqlCommand("INSERT INTO TBL (A,B,C) VALUES...");

cmd.ExecuteNonQuery();

}

INSERT INTO TableName (A,B,C) VALUES (1,2,3),(4,5,6),(7,8,9)

69

Table join is better than sub-query

 If A,B is many to one or one to one relationship

 Replace

SELECT * FROM A

WHERE A.CITY IN

(SELECT B.City FROM B)

 With

SELECT A.* FROM A INNER JOIN B ON A.City

70

In a join, small table should precede larger

 If A is a large table and B is small. Small table should drive

the large table. This changes the table driving path.

 Replace

SELECT * FROM A,B

WHERE A.STATE = B.STATE

 With

SELECT * FROM B,A

WHERE A.STATE = B.STATE

71

Use indexed/materialized views

 A indexed/materialized view is a replica of base tables

 → base tables change → must update data on view

 Can be queried like a normal view

 How they speed up queries

 Perform JOINs and calculation in advance

 Can be indexed to access faster

72

Lock problem

73

Effective Locking

 Use the lowest necessary isolation level

 For transaction

 Keep short

 Use the same resource use to avoid dead lock

 Don’t hold locks while waiting for user Input!

 Someone in service department wants to use an update screen to
view data

 Then goes on to view a work order

 Then forgets and goes to lunch

 Not just user input, but any process that may have an open
ended wait

