
ADVANCED DATABASE

Performance tuning

Dr. NGUYEN Hoang Ha

Email: nguyen-hoang.ha@usth.edu.vn

“THE RIGHT THING AT A WRONG TIME

IS A WRONG THING”
Joshua Harris (2012).

“I Kissed Dating Goodbye: A New Attitude Toward Relationships and Romance”

3

Agenda

I. Overview

II. Diagnostic

III. System and Hardware

IV. Design strategies

V. Index use

VI. Programming techniques

1. OVERVIEW

5

Needs vs Problems

 Needs

 More business → Higher speed

 More concurrent users → Less resource consumption per user

 Problems
A Constantly-changing Environment

6

Problems

Data Growth

Response

time

Throughput

7

Goals

 The all-encompassing goal of the computer industry is speed

→Make a set of DB applications execute faster

 Definition: DB performance tuning is a set activities and
procedure to optimize:

 Response time

 Throughput

 What we should do?

 Make queries run faster

 Make updates run faster

 Minimize congestion due to concurrency

 Facts:

 Functional SQL → not difficult

 Write efficient, high performance SQLs → harder

8

What affects performance

 SQL statements

 Indexes

 DB design

 Server settings

 OS

 Hardware

Application

programmers

Business analysist,

data architect,

…

DBA,

tuner

9

Possible causes

 Weak hardware

 Lack of proper and meaningful

maintenance

 Poor monitoring and scheduling etc..

 Bad server settings

 Applications

 Poor design

 Bad SQL statements

 By developers, users

Application Others

10

Rules of thumb

 Optimize the DB before upgrading the hardware

 Try to have good DB design and well written code

 Focus the optimization effort on the most frequently
run code, rather than the slowest code

 Focus on fixing the worst performing aspect of the
application first

 Keep a list of possible optimization ideas, even if
you do not have time to implement them now

 Spend time for using the application as a user

10

11

Tuning strategy

 Keep it Simple

 Small changes with low impact but with high

performance benefits

 Localized changes

 No change in logic

 Easy to understand, test and deploy

12

Fallacies

 Too busy now. I’ll do it later.

 I’m a Java or C# not an SQL, programmer.

 Is there optimizer tool is for?

 I don’t know how.

 Let tool generate SQL → hard to control.

 It works. I’ve got my data. I’m happy.

Tuning modes

Proactive

 Is planned

 Low time pressure

 No scope

 Sometimes no target

Reactive

 Cannot be planned

 High time pressure

 Scope limited to specific problems

 Clear target

▪When to tune?

▪At the time it is written

▪As the database changes

14

Considered factors

 Budgets

 Time frame

 Functional requirements

 Required performance

 Critical nature of the system to the core business

 Risks

 Acceptable

 Unacceptable

15

DB development good practice

Team Developers Process

Prepare

Write & Compile

Test Code

Debug

Code Review

Optimize SQL

US
Development

Team

HK
Development

Team

ZHA/SHA
Development

Team

Team Review

Scheduled

Code Review

Benchmark test

& SQL Scan

Manager

Management

Reporting

Bad Code or Problematic SQL Detected:
Return to Development

Pre-deployment

QA: Regression
Testing and
Scalability/

Performance
Tuning

Code Review
Successful

Production
DatabaseVersion

Control
(Team Coding)

16

Tuning process

Diagnostic

• Monitor

• Benchmark
Prescribe Change

Test

• Re-
benchmark

II. DIAGNOSTIC

18

Metric 1: Query cost

http://sqlvn.com/wp-content/uploads/QueryCost.jpg

19

Metric 2: Page reads

 Number of read pages

 SQL server: Page size = 8KB

 To see: put SET STATISTIC IO ON before the query

http://sqlvn.com/wp-content/uploads/PageReads.jpg

20

Metric 3: Query Execution Time

 How long a statement executes

 To see: put SET STATISTICS TIME ON before the statement

http://sqlvn.com/wp-content/uploads/ExecutionTime.jpg

21

Dynamic Management Views

 SQL Server counters

SELECT *

FROM sys.dm_os_performance_counters

 Sessions

 sys.dm_exec_sessions

 Connection

 sys.dm_exec_connections

 Mission indices

 Sys.dm_db_missing_index_group_stats

 Sys.dm_db_missing_index_groups

 Sys.dm_db_missing_index_details

 Sys.dm_db_missing_index_columns

22

Analyze query plan

 Index seek vs. Index Scan

23

Monitor tools: SQL Server Profiler

24

Monitor tools: Performance Monitor

25

I/O performance of system

 CrystalDiskMark

III. SYSTEM AND HARDWARE

27

Load Balanced Asynchronous Processing

 Scale up by distribution the system

 When real time analysis of large volumes of data is required, move

the calculations into a middle-tier

 Allow several servers to run the middle tier objects and

federate the data to be processed

Data

Application ServerApplication Server

Cache Cache

- Processing Engine
- Calculations

- Processing Engine
- Calculations

28

Mirrored Data

 Use techniques for mirroring data between n servers to

separate analysis transactions from OLTP transactions

 Techniques can include using replication and double commit

of transactions

Application ServerApplication Server

Cache Cache

- Processing Engine
- Calculation

- Processing Engine
- Calculations

Reporting

Data

Core

Data

29

Consequences of “Moore’s law” on Hardware

 Over the last decade:

 10x better access time

 10x more bandwidth

 100x more capacity

 4000x lower media price

 Scan takes 10x longer (3 min vs 45 min)

 Data on disk is accessed 25x less often (on average)

 → Consider upgrading RAM, Storage, CPU, Network

30

Data Flood

 Disk Sales double every nine months

 Because volume of stored data increases

 Data Warehouses

 Internet Logs

 Web Archives

 Sky Survey

 Because media price drops much faster than areal density.

Graph courtesy of Joe Hellerstein

Source: J. Porter, Disk/Trend, Inc.

http://www.disktrend.com/pdf/portrpkg.pdf

0

500

1000

1500

2000

2500

3000

3500

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

Year

P
e

ta
b

y
te

s

Sales

Moore's
Law

31

Magnetic Disks

 Access Time (2001)

 Controller overhead (0.2 ms)

 Seek Time (4 to 9 ms)

 Rotational Delay (2 to 6 ms)

 Read/Write Time (10 to 500 KB/ms)

 Disk Interface

 IDE (16 bits, Ultra DMA - 25 MHz)

 SCSI: width (narrow 8 bits vs. wide 16
bits) - frequency (Ultra3 - 80 MHz).

http://www.pcguide.com/ref/hdd/

32 32

RAID Levels

 RAID 0: striping (no redundancy)

 RAID 1: mirroring (2 disks)

 RAID 5: parity checking

 Read: stripes read from multiple disks (in parallel)

 Write: 2 reads + 2 writes

 RAID 10: striping and mirroring

 Software vs. Hardware RAID:

 Software RAID: run on the server’s CPU

 Hardware RAID: run on the RAID controller’s CPU

33

OS and software

 64-bit OS are suggested

 Keep updating OS and DBMS

 Proper level of firewall

 Antivirus

34

Server memory options

IV. DESIGN STRATEGY

36

DB design affects performance

 The foundation of an application is the database design. It

affects the type of queries

 Databases that are not properly normalized require

additional code to maintain data integrity.

 Databases that use composite primary keys require multiple

join condition.

 Database without comprehensive constraints require extra

codes to validate the data during data inputting

37

Guidelines

 Normalize the database to 3NF

 Don’t over-normalize or over-complicate the database. Keep
working until a simple and elegant design is found

 Avoid database designs that move data from table to table in
a transactional manner

 Use a data-driven database design rather than designs with
any hard-coded values

 Avoid temporary tables

 Design the DB schema with queries in mind.

 When necessary, do duplicate data from Normalized tables
to DeNormalized read-only tables for faster reading

38

Denormalization example

 Normalized

 Students (StudentID, FirstName, LastName….)

 Subjects (SubjectID, SubjectName). Suppose cardinality is 3

 Grades (StudentID, SubjectID, grade)

 → Join queries are expensive

 Denormalize Grades into 0NF

 Students (StudentID, FirstName, LastName….)

 Subjects (SubjectID, SubjectName)

 Grades (StudentID, Subject1, Subject2, Subject3)

39

Horizontal and Vertical partitioning

40

Recomposing with VIEW

CREATE VIEW Emp AS

SELECT E.*, P.Picture

FROM Employee E INNER JOIN EmployeePicture P

ON E.EmployeeID = P.EmployeeID

41

Recomposing with VIEW

CREATE VIEW Reports AS

SELECT * FROM January

UNION

SELECT * FROM February

UNION

SELECT * FROM March

42

Precomputed columns

 System takes time to compute aggregated, inferred values

 Eg: Purchasing.PurchaseOrderDetail of Adventure Works

 Use trigger to update precomputed columns

V. INDEX USE

44

Index Implementations in some major DBMS

 SQL Server

 B+Tree data structure

 Clustered indexes are sparse

 Indexes maintained as
updates/insertions/deletes are
performed

 DB2

 B+Tree data structure, spatial
extender for R-tree

 Clustered indexes are dense

 Explicit command for index
reorganization

 Oracle

 B+tree, hash, bitmap, spatial
extender for R-Tree

 clustered index

 Index organized table
(unique/clustered)

 Clusters used when creating
tables.

 TimesTen (In-memory DBMS)

 T-tree

EXEC sp_helpindex [table name] to list all indexes

45

Clustered Indexes

 In a clustered index, the actual data rows that comprise the

table are stored at the leaf level of the index

 The physical row order of the table and the order of rows in

the index are the same

→ Each table can have only one clustered index

 PK columns are good candidates for clustered indexes

46

Non-clustered index

 The Non-Clustered index is an index structure separate

from the data stored in a table

→A table can have more than one non-clustered index

 Non-clustered indexes are slower than clustered indexes

because the DMBS must follow a pointer to retrieve the

actual data row.

 The leaf nodes of a non-clustered index can optionally

contain values from non-indexed columns

47

Clustered vs. Nonclustered indexes

48

Using the FILLFACTOR Option

 Specifies how much to fill the page

 Impacts leaf-level pages
Data Pages Full

Con

Funk

White

Rudd

...

...

...

...

470401

470402

470403

470501

White ... 470502
Barr ... 470503

Akhtar

Funk

Smith

Martin

Smith

...

...

...

...

...

470601

470602

470603

470604

470701
Ota ... 470702

Martin

Phua

Jones

Smith

Ganio

...

...

...

...

...

470801

470802

470803

470804

470901
Jones ... 470902

Data Pages

50% Fillfactor

Con

Funk

White

...

...

...

470401

470402

470403

Rudd

White

Barr

...

...

...

470501

470502

470503

Akhtar

Funk

Smith

...

...

...

470601

470402

470603

Martin

Smith

Ota

...

...

...

470604

470701

470702

Martin

Phua

Jones

...

...

...

470801

470802

470803

Smith

Ganio

White

...

...

...

470804

470901

470902

49

Using the PAD_INDEX Option

 PAD_INDEX ON means applying FILLFACTOR to all

NonLeaf Level of B-tree

 Must use with FILLFACTOR option

50

Index selectivity

 Create every primary key as a non-clustered index

 Create a clustered index for every table.

 Primary tables: cluster the most common ORDER BY columns, don’t
cluster the primary key.

 Secondary tables: create a clustered index for the most important
foreign key

 Create non-clustered indexes for the columns of every
foreign key

 Create single-column index for every column referenced in
a WHERE clause or an ORDER BY clause

 If a table is heavily updated, index as few columns as possible

 If a table is updated rarely, use as many indexed columns as
necessary to achieve maximum query performance

51

Covering index

 An non-clustered index which can satisfy all requested

columns in a query without performing a further lookup

into the clustered index. → save time

 Non-clustered index can include some other columns so

that the query can fetch enough columns from the index

 Eg CREATE NONCLUSTERED INDEX IX_Person_RowGuid

ON Person.Person(rowguid) INCLUDE (FirstName,LastName)

52

Exploit index when available

Use AdventureWorks2014;

SELECT EmailAddress FROM Person.EmailAddress

WHERE EmailAddress LIKE 'b%'

SELECT EmailAddress FROM Person.EmailAddress

WHERE LEFT(EmailAddress,1) = 'b'

53

Data types cannot be indexed

 Image

 Varbinary(max)

 Text

 Ntext

 Varchar (max)

 Nvarchar(max)

Fulltext search

54

What is Fulltext search

 Allows searching for text/words in columns

 Similar words

 Plural of words

 Based on special index

 Full-text index (Full text catalog)

55

Full-text search Predicates

 CONTAINS: match words and phrases,

 CONTAINSTABLE

 Return a table Key

 Rank: 0 to 1000 shows how well the results match

DECLARE @SearchWord nvarchar(30)

SET @SearchWord = N'performance'

SELECT ProductDescriptionID, Description

FROM Production.ProductDescription

WHERE CONTAINS(Description, @SearchWord);

SELECT * FROM CONTAINSTABLE (Production.ProductDescription , [Description], @SearchWord)

 FREETEXT: match the meaning, but not the exact wording

 FREETEXTTABLE

56

SQL Server Fulltext Setup

 To check:

SELECT SERVERPROPERTY('IsFullTextInstalled’)

 Install Fulltext

57

Examples

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, N' FORMSOF (INFLECTIONAL, ride) ');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, N' FORMSOF (THESAURUS, ride) ');

Word proximity

NEAR (~)

How near words are in the text/document

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, N'mountain NEAR bike');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, N'mountain ~ bike');

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE CONTAINS(Description, 'ISABOUT (mountain weight(.8), bikes weight (.2))');

58

Execution plan of Fulltext Search

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE [Description] LIKE N'%bike%';

SELECT ProductDescriptionID, Description FROM Production.ProductDescription

WHERE FREETEXT(Description, N'bike');

59

FREETEXT vs. CONTAINS

60

Full-Text Search Terminologies

 Full-text index

 Information about words and their location in columns

 Used in full text queries

 Full-text catalog

 Group of full text indexes (Container)

 Token

 Word identified by word breaker

 Word breaker

 Tokenizes text based on language

61

Full-Text Search Terminologies (cont’)

 Stopwords/Stoplists

 not relevant word to search

 e.g. ‘and’, ‘a’, ‘is’ and ‘the’ in English

 Some languages without stop list supported

 Accent insensitivity

 cafè = cafe

62

Index vs. Full-text index

Full-text indexes Regular SQL Server indexes

Stored in the file system, but administered

through the database..
Stored under the control of the database in

which they are defined.

Only one full-text index allowed per table. Several regular indexes allowed per table.

Addition of data to full-text indexes, called

population, can be requested through either a

schedule or a specific request, or can occur

automatically with the addition of new data.

Updated automatically when the data upon

which they are based is inserted, updated, or

deleted.

63

Populating a Full-Text Index

 Full

 Read and process all rows

 Very resource-intensive

 Incremental

 Automatically populates the index for rows that were modified since the

last population

 Requires timestamp column

 Update

 Uses changes tracking from SQL Server (inserts, updates, and deletes)

 Specify how you want to propagate the changes to the index

 AUTO automatic processing

 MANUAL implement a manual method for processing changes

64

Disadvantages

 Full text catalogs

 Disk space

 Up-to-date

 Continuous updating → performance hit

 Queries

 Complicated to generate

 Generated as a string

65

Advantages

 Much more powerful than LIKE

 Specific

 Ranking

 Performance

 Pre-computed ranking (FREETEXTTABLE)

 Configurable Population Schedule

 Continuously track changes, or index when the CPU is idle

VI. PROGRAMMING TECHNIQUES

67

Some guidelines

 Exploit precompiled, loaded code

 Stored procedure, function

 Avoid Embedded SQL

 Avoid coding loops

 Minimal Use of Cursors

 Use set-based instead of row-based operations

 Row-based can be unknowingly implemented by:

 Cursors

 DTS Lookup

 Functions to perform lookups

68

Bad loop

for (int i = 0; i < 1000; i++)

{

SqlCommand cmd = new SqlCommand("INSERT INTO TBL (A,B,C) VALUES...");

cmd.ExecuteNonQuery();

}

INSERT INTO TableName (A,B,C) VALUES (1,2,3),(4,5,6),(7,8,9)

69

Table join is better than sub-query

 If A,B is many to one or one to one relationship

 Replace

SELECT * FROM A

WHERE A.CITY IN

(SELECT B.City FROM B)

 With

SELECT A.* FROM A INNER JOIN B ON A.City

70

In a join, small table should precede larger

 If A is a large table and B is small. Small table should drive

the large table. This changes the table driving path.

 Replace

SELECT * FROM A,B

WHERE A.STATE = B.STATE

 With

SELECT * FROM B,A

WHERE A.STATE = B.STATE

71

Use indexed/materialized views

 A indexed/materialized view is a replica of base tables

 → base tables change → must update data on view

 Can be queried like a normal view

 How they speed up queries

 Perform JOINs and calculation in advance

 Can be indexed to access faster

72

Lock problem

73

Effective Locking

 Use the lowest necessary isolation level

 For transaction

 Keep short

 Use the same resource use to avoid dead lock

 Don’t hold locks while waiting for user Input!

 Someone in service department wants to use an update screen to
view data

 Then goes on to view a work order

 Then forgets and goes to lunch

 Not just user input, but any process that may have an open
ended wait

