Probability and Statistics Lecture 1 Probability Spaces

Radjesvarane ALEXANDRE

radjesvarane.alexandre@usth.edu.vn or alexandreradja@gmail.com University of Science and Technology of Hanoi

1 Generalities

2 Probability Notion

- The case finite or countable
 Counting/Enumeration
 Draws and Urns
- Geometric probabilities
- **5** Conditional Probabilities

A random phenomena, reproduced a number of times with exactly the same conditions, will give different results.

These results are different from each other in a unpredictable fashion.

Examples : flipping a coin (flipping heads or tails), dice rolling, lifetime of a light bulb, time arrival of a sailing boat ...

A <u>random</u> experiment \mathcal{E} : repeated within the same conditions, can lead to different possible results (outcomes).

The set of all possible outcomes (samples) is usually called :

the state space, the realization space,

the space of events, the space of samples.

Denoted by Ω .

A possible outcome $\omega \in \Omega$:basic or simple event.

An event A is a subset of the full space of events $\Omega : A \subset \Omega$.

 \emptyset : impossible event ; Ω : certain event.

If Ω is a finite set with *card* $\Omega = n$, then there are 2^n events (simple).

Example

throwing two coins head/tail : $\Omega = \{HH, TT, TH, HT\}$. \odot

Example

rolling a dice
$$\Omega = \{1, 2, 3, 4, 5, 6\}.\odot$$

Example

throwing a dart on a circular target of 30cm diameter. experiment : describe the impact of the dart in a orthonormal frame centered at the center of the target : : $\Omega = \{(x, y), x^2 + y^2 \le 15^2\}$. \odot

Example

Lifetime of a light bulb : $\Omega = [0, +\infty[. \odot$

A random experiment : -> one and only one basic event.. Basic events are incompatible : that is two basic events cannot occur at the same time. Morover basic events are exhaustive. Ω is exactly equal to the union of all basic events. If Ω is finite or infinite countable : discrete. If Ω is infinite non countable : it is said continuous.

Example

Dice (6 faces) rolling.

a) A possible outcome, for ex. 5 : one realization, ω .

b) All possible outcomes $\{1,2,3,4,5,6\}$: set of realizations or state space, $\Omega.$

c) An event throw : an example of an event, $A \subset \Omega$. The opposite event : A^c .

- d) Certain event : Ω ;
- e) Impossible event : \emptyset ;
- f) The event A and B is $A \cap B$;
- g) The event A or B (non exclusive) is $A \cup B$;

h) A and B are incompatible if $A \cap B = \emptyset$.

 \odot

Probability Notion

Example of a dice rolling (with 6 faces). Question : probability (that is the chance) to get "2"? Test : a large number N of identical throws and then count the number of "2" out of these throws. A : event (basic) get "2"; N(A) : number of obtained "2". The empirical (statistical, sampling) frequency of success $\frac{N(A)}{N}$ should be close to 1/6 : P(A), that is the probability of getting A. This is so if the die is not rigged. By using a large set of throws, it should appear that

$$P(\Omega)=$$
 1, $P(arnothing)=$ 0,

and for two incompatible events, that is such that $A \cap B = \emptyset$, we have

$$P(A \cup B) = P(A) + P(B).$$

Therefore, we have a map from $\mathcal{P}(\Omega)$ into \mathbb{R} .

We set

$$\mathcal{T} = \mathcal{P}(\Omega)$$

Definition 3.1

A probability (on Ω) is a map (application) P from $\mathcal T$ into [0,1] such that :

-
$$P(\Omega) = 1$$
 and $P(\emptyset) = 0$.

- If A_i , $i \in I$, is an at most countable set of 2 by 2 disjoint events, then $(\sigma$ -additivity)

$$P(\cup_{i\in I}A_i)=\sum_{i\in I}P(A_i)$$

 (Ω, \mathcal{T}, P) : a probability space. An event A is said almost certain if P(A) = 1 and negligeable if P(A) = 0.

Example

Throw of a die :
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
, $\mathcal{T} = \mathcal{P}(\Omega)$ and $P(\{\omega\}) = P(\omega) = 1/6$, for all $\omega \in \Omega$. \odot

Proposition 3.1

For any event A and B in T, we have :

- $P(A^c) = 1 P(A);$
- 2 $P(A \cup B) = P(A) + P(B) P(A \cap B)$;
- 3 $P(A) \leq P(B)$ si $A \subset B$;
- If A_i, i ∈ I, is an at most countable set of 2 by 2 disjoint events, and covering Ω, then

$$P(B) = \sum_{i \in I} P(A_i \cap B)$$

Proof 1

exercice.

- If Ω is at most countable, then we take $\mathcal{T} = \mathcal{P}(\Omega)$.
- -> the probabiliyP is determined by the values $P(\omega),$ for all $\omega\in\Omega.$
- -> for all event $A\in\mathcal{T}$, we have

$$P(A) = \sum_{\omega \in A} P(\omega)$$

Definition 4.1

If Ω is finite, we call uniform probability on Ω the probability P defined by

$$\mathsf{P}(\omega) = rac{1}{ ext{card }\Omega}, ext{ for all } \omega \in \Omega.$$

In this case, for any event A, we have

$$P(A) = \frac{card \ A}{card \ \Omega}$$

Facts :

- number of permutations (or bijections) of $\{1, ..., n\}$ is n!.
- number of arrangements of k elements from n, or number of injections from $\{1, ..., k\}$ into $\{1, ..., n\}$ is $A_n^k = \frac{n!}{(n-k)!}$.
- number of subsets with k elements from a set with n elements is $C_n^k = \frac{n!}{k!(n-k)!}$.
- Binomial formulae :

$$(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}$$

Let N balls with k different colors : N_1 balls with color 1, ..., N_k balls with color k. Fraction of balls with color i is

$$p_i = N_i / N$$
.

Experiment : we draw randomly *n* balls from the urn, with $n \le N$. <u>Problem</u> : repartition (distribution) of obtained colors and computation of

$$P_{n_1n_2\dots n_k}$$

which is the probability to obtain n_1 balls with color 1..., with $n_1 + n_2 + ... + n_k = n$. Definition of a draw : draw with reset, draw without reset, simultaneous draw.

a) Simultaneous draw

We draw all balls in the same draw.

 Ω : set of all possible sets of length *n* of different elements among N : number C_N^n .

$$P_{n_1n_2...n_k} = \frac{C_{N_1}^{n_1}...C_{N_k}^{n_k}}{C_N^n}$$

polygeometric distribution . Specific case of two colors :

$$P_{n_1,n-n_1} = \frac{C_{N_1}^{n_1} C_{N-N_1}^{n-n_1}}{C_N^n}$$

is the hypergeometric law .

b) Draw with reset

Successive draws, with reset the drawn ball at each time. Ω : set of all the *n*-couples of elements of the urn. Card $\Omega = N^n$. Unform probability on Ω .

$$P_{n_1...n_k} = \frac{n!}{n_1!n!...n_k!} \frac{N_1^{n_1}...N_k^{n_k}}{N^n}$$

multinomial distribution. If k = 2, $p_1 = p$ and $p_2 = 1 - p$,

$$P_{n_1,n-n_1} = C_n^{n_1} p^{n_1} (1-p)^{n-n_1}.$$

which is the binomial law with parameters n and p.

c) Draw without reset

We draw the balls successively, but without reset. Ω is the set of sequences of *n* different elements among *N*, the number of which is A_{N}^{n} .

One can show that we obtain the same probability as in the simultaneous case.

Thus equivalence between draw without reset and simultaneous draw.

Geometric probabilities

Let Ω be a bounded regular [what is it] set of \mathbb{R}^n . We set :

$$P(A) = \frac{|A|}{|\Omega|}$$

|A| and $|\Omega|$: measure of these sets, that is lenght, area or volume in dimension 1, 2 or 3 resp. We construct T by at most countable intersection or union of

cubes [see lectures on integratino theory]

Example

 $\Omega = [\textit{a},\textit{b}] \subset \mathbb{R}$; we take

$$P([c,d]) = \frac{d-c}{b-a}.$$

Definition 6.1

Let A and B two events, with $P(B) \neq 0$. We call conditional probability of A w.r.t B or relative to B or knowing B, the number $P(A \cap B)$

$$P(A|B) \equiv \frac{P(A \cap B)}{P(B)}$$

We have

$$P(A^c|B) = 1 - P(A|B).$$

Proposition 6.1

Multiplication Rule If $P(B) \neq 0$, then

 $P(A \cap B) = P(A|B)P(B)$ and $P(A \cap B) = P(B|A)P(A)$ if $P(A) \neq 0$

Proposition 6.2

Bayes formulae If $P(A).P(B) \neq 0$, then

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Definition 6.2

Partition Let B_1 , B_2 , ..., B_n be a sequence (at most countable) of 2 by 2 disjoint events and whose union covers the state of events Ω . Then we say that this sequence is a partition of Ω .

Assumption : it is assumed that these events are of strictly positive probabilities. The most simple example is given by A and A^c .

Proposition 6.3

Total probability rule If $(B_i)_{i \in IN}$ is a partition of Ω , then for all $A \subset \Omega$, we have

$$P(A) = \sum_{k \in \mathbb{N}} P(A \cap B_k) = \sum_{k \in \mathbb{N}} P(A|B_k) P(B_k)$$

if $P(B_k) > 0$ for any k.

Finally, applying the previous results, we have

Proposition 6.4

Bayes Rule

Let $(B_i)_i$ be a partition of Ω of non null probability. Then for any $A \subset \Omega$, we have

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_k P(A|B_k)P(B_k)} \text{ for all } j$$

Definition 6.3

Two events A and B are called independent iff

 $P(A \cap B) = P(A)P(B).$

Proposition 6.5

Two events A and B of non null probability are independent iff

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$

If A and B are independent, then A^c and B are too also. Similarly for A and B^c , for A^c and B^c .