Probability and Statistics Lecture 1 Probability Spaces

Radjesvarane ALEXANDRE

radjesvarane.alexandre@usth.edu.vn
or alexandreradja@gmail.com
University of Science and Technology of Hanoi

Contents

(1) Generalities
(2) Probability Notion
(3) The case finite or countable

- Counting/Enumeration
- Draws and Urns

4 Geometric probabilities
(5) Conditional Probabilities

Generalities

A random phenomena, reproduced a number of times with exactly the same conditions, will give different results.
These results are different from each other in a unpredictable fashion.
Examples : flipping a coin (flipping heads or tails), dice rolling, lifetime of a light bulb, time arrival of a sailing boat ...
A random experiment \mathcal{E} : repeated within the same conditions, can lead to different possible results (outcomes).
The set of all possible outcomes (samples) is usually called : the state space, the realization space, the space of events, the space of samples.
Denoted by Ω.

A possible outcome $\omega \in \Omega$:basic or simple event. An event A is a subset of the full space of events $\Omega: A \subset \Omega$.
\varnothing : impossible event; Ω : certain event.
If Ω is a finite set with card $\Omega=n$, then there are 2^{n} events (simple).

Example

throwing two coins head/tail : $\Omega=\{H H, T T, T H, H T\}$.

Example

rolling a dice $\Omega=\{1,2,3,4,5,6\} . \odot$

Example

throwing a dart on a circular target of 30 cm diameter. experiment : describe the impact of the dart in a orthonormal frame centered at the center of the target : : $\Omega=\left\{(x, y), x^{2}+y^{2} \leq 15^{2}\right\} . \odot$

Example

Lifetime of a light bulb : $\Omega=[0,+\infty[$.

A random experiment : $->$ one and only one basic event.. Basic events are incompatible : that is two basic events cannot occur at the same time. Morover basic events are exhaustive.
Ω is exactly equal to the union of all basic events.
If Ω is finite or infinite countable : discrete.
If Ω is infinite non countable: it is said continuous.

Example

Dice (6 faces) rolling.
a) A possible outcome, for ex. 5 : one realization, ω.
b) All possible outcomes $\{1,2,3,4,5,6\}$: set of realizations or state space, Ω.
c) An event throw : an example of an event, $A \subset \Omega$. The opposite event: A^{c}.
d) Certain event : Ω;
e) Impossible event : \varnothing;
f) The event A and B is $A \cap B$;
g) The event A or B (non exclusive) is $A \cup B$;
h) A and B are incompatible if $A \cap B=\varnothing$.

Probability Notion

Example of a dice rolling (with 6 faces).
Question : probability (that is the chance) to get " 2 "?
Test : a large number N of identical throws and then count the number of " 2 " out of these throws.
A : event (basic) get " 2 ";
$N(A)$: number of obtained " 2 ".
The empirical (statistical, sampling) frequency of success $\frac{N(A)}{N}$ should be close to $1 / 6: P(A)$, that is the probability of getting A. This is so if the die is not rigged.
By using a large set of throws, it should appear that

$$
P(\Omega)=1, P(\varnothing)=0
$$

and for two incompatible events, that is such that $A \cap B=\varnothing$, we have

$$
P(A \cup B)=P(A)+P(B)
$$

Therefore, we have a map from $\mathcal{P}(\Omega)$ into \mathbb{R}.

We set

$$
\mathcal{T}=\mathcal{P}(\Omega)
$$

Definition 3.1
A probability (on Ω) is a map (application) P from \mathcal{T} into $[0,1]$ such that :

- $P(\Omega)=1$ and $P(\varnothing)=0$.
- If $A_{i}, i \in I$, is an at most countable set of 2 by 2 disjoint events, then (σ-additivity)

$$
P\left(\cup_{i \in I} A_{i}\right)=\sum_{i \in I} P\left(A_{i}\right)
$$

(Ω, \mathcal{T}, P) : a probability space.
An event A is said almost certain if $P(A)=1$ and negligeable if $P(A)=0$.

Example

Throw of a die : $\Omega=\{1,2,3,4,5,6\}, \mathcal{T}=\mathcal{P}(\Omega)$ and $P(\{\omega\})=P(\omega)=1 / 6$, for all $\omega \in \Omega . \odot$

Proposition 3.1

For any event A and B in \mathcal{T}, we have :
(1) $P\left(A^{c}\right)=1-P(A)$;
(2) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$;
(3) $P(A) \leq P(B)$ si $A \subset B$;
(4) If $A_{i}, i \in I$, is an at most countable set of 2 by 2 disjoint events, and covering Ω, then

$$
P(B)=\sum_{i \in I} P\left(A_{i} \cap B\right)
$$

Proof 1
 exercice.

The case finite or countable

If Ω is at most countable, then we take $\mathcal{T}=\mathcal{P}(\Omega)$.
$->$ the probabiliy P is determined by the values $P(\omega)$, for all
$\omega \in \Omega$.

- > for all event $A \in \mathcal{T}$, we have

$$
P(A)=\sum_{\omega \in A} P(\omega)
$$

Definition 4.1

If Ω is finite, we call uniform probability on Ω the probability P defined by

$$
P(\omega)=\frac{1}{\operatorname{card} \Omega}, \text { for all } \omega \in \Omega
$$

In this case, for any event A, we have

$$
P(A)=\frac{\operatorname{card} A}{\operatorname{card} \Omega}
$$

Counting/Enumeration

Facts :

- number of permutations (or bijections) of $\{1, \ldots, n\}$ is n !.
- number of arrangements of k elements from n, or number of injections from $\{1, \ldots, k\}$ into $\{1, \ldots, n\}$ is $A_{n}^{k}=\frac{n!}{(n-k)!}$.
- number of subsets with k elements from a set with n elements is $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.
- Binomial formulae :

$$
(x+y)^{n}=\sum_{k=0}^{n} C_{n}^{k} x^{k} y^{n-k}
$$

Draws and Urns

Let N balls with k different colors: N_{1} balls with color $1, \ldots, N_{k}$ balls with color k.
Fraction of balls with color i is

$$
p_{i}=N_{i} / N
$$

Experiment : we draw randomly n balls from the urn, with $n \leq N$. Problem : repartition (distribution) of obtained colors and computation of

$$
P_{n_{1} n_{2} \ldots n_{k}}
$$

which is the probability to obtain n_{1} balls with color $1 \ldots$, with $n_{1}+n_{2}+\ldots+n_{k}=n$.
Defnition of a draw : draw with reset, draw without reset, simultaneous draw.

a) Simultaneous draw

We draw all balls in the same draw.
Ω : set of all possible sets of length n of different elements among N : number C_{N}^{n}.

$$
P_{n_{1} n_{2} \ldots n_{k}}=\frac{C_{N_{1}}^{n_{1}} \ldots C_{N_{k}}^{n_{k}}}{C_{N}^{n}}
$$

polygeometric distribution.
Specific case of two colors :

$$
P_{n_{1}, n-n_{1}}=\frac{C_{N_{1}}^{n_{1}} C_{N-N_{1}}^{n-n_{1}}}{C_{N}^{n}}
$$

is the hypergeometric law.

b) Draw with reset

Successive draws, with reset the drawn ball at each time. Ω : set of all the n-couples of elements of the urn. Card $\Omega=N^{n}$. Unform probability on Ω.

$$
P_{n_{1} \ldots n_{k}}=\frac{n!}{n_{1}!n!\ldots n_{k}!} \frac{N_{1}^{n_{1}} \ldots N_{k}^{n_{k}}}{N^{n}}
$$

multinomial distribution. If $k=2, p_{1}=p$ and $p_{2}=1-p$,

$$
P_{n_{1}, n-n_{1}}=C_{n}^{n_{1}} p^{n_{1}}(1-p)^{n-n_{1}} .
$$

which is the binomial law with parameters n and p.

c) Draw without reset

We draw the balls sucessively, but without reset. Ω is the set of sequences of n different elements among N, the number of which is A_{N}^{n}.
One can show that we obtain the same probability as in the simultaneous case.
Thus equivalence between draw without reset and simultaneous draw

Geometric probabilities

Let Ω be a bounded regular [what is it] set of \mathbb{R}^{n}. We set :

$$
P(A)=\frac{|A|}{|\Omega|}
$$

$|A|$ and $|\Omega|$: measure of these sets, that is lenght, area or volume in dimension 1, 2 or 3 resp.
We construct \mathcal{T} by at most countable intersection or union of cubes [see lectures on integratino theory]

Example
$\Omega=[a, b] \subset \mathbb{R}$; we take

$$
P([c, d])=\frac{d-c}{b-a}
$$

Conditional Probabilities

Definition 6.1

Let A and B two events, with $P(B) \neq 0$. We call conditional probability of A w.r.t B or relative to B or knowing B, the number

$$
P(A \mid B) \equiv \frac{P(A \cap B)}{P(B)}
$$

We have

$$
P\left(A^{c} \mid B\right)=1-P(A \mid B)
$$

Proposition 6.1
Multiplication Rule If $P(B) \neq 0$, then
$P(A \cap B)=P(A \mid B) P(B)$ and $P(A \cap B)=P(B \mid A) P(A)$ if $P(A) \neq 0$

Proposition 6.2

Bayes formulae If $P(A) \cdot P(B) \neq 0$, then

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Definition 6.2

Partition Let $B_{1}, B_{2}, \ldots, B_{n}$ be a sequence (at most countable) of 2 by 2 disjoint events and whose union covers the state of events Ω. Then we say that this sequence is a partition of Ω.

Assumption: it is assumed that these events are of strictly positive probabilities. The most simple example is given by A and A^{c}.

Proposition 6.3

Total probability rule If $\left(B_{i}\right)_{i \in \mathbb{N}}$ is a partition of Ω, then for all $A \subset \Omega$, we have

$$
P(A)=\sum_{k \in \mathbb{N}} P\left(A \cap B_{k}\right)=\sum_{k \in \mathbb{N}} P\left(A \mid B_{k}\right) P\left(B_{k}\right)
$$

if $P\left(B_{k}\right)>0$ for any k.
Finally, applying the previous results, we have

Proposition 6.4

Bayes Rule

Let $\left(B_{i}\right)_{i}$ be a partition of Ω of non null probability. Then for any $A \subset \Omega$, we have

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{k} P\left(A \mid B_{k}\right) P\left(B_{k}\right)} \text { for all } j
$$

Definition 6.3

Two events A and B are called independent iff

$$
P(A \cap B)=P(A) P(B)
$$

Proposition 6.5

Two events A and B of non null probability are independent iff

$$
P(A \mid B)=P(A) \text { or } P(B \mid A)=P(B)
$$

If A and B are independent, then A^{c} and B are too also. Similarly for A and B^{c}, for A^{c} and B^{c}.

