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Chapter 1

Probability Spaces

1.1 Generalities

Probability calculus aims to give a quantitative analysis of random phenomena, which may appear
somehow contradictory, that is proceed to the mathematical analysis of phenomena where random-
ness plays an important role.

Intuitively, a random phenomena, when repeated a certain number of times with identical con-
ditions, will behave differently, so that the result of that experiment changes from the last one in an
imprevisible manner.

For example: game of heads and tails (tossing of coins), dice throwing, lifetime of an electric bulb,
arrival time of a sailing boat ...

We can then say that an experiment E is random if, repeated with identical conditions, can lead
to possibly different results, of which we cannot assert for certain the result in advance.

The space or the set of all possible results (outcomes) is usually called:
the state space ,

the realizations space ,

the space of events ,

the samples space .

It is denoted by Ω.
A possible result will be denoted by ω. Thus ω ∈ Ω.
This is what is usually called an elementary event .

More generally, an event is a subset of the space of events Ω.
In particuliar, ∅ is the impossible event and Ω is the certain event.
If Ω is a finite set with Card = n, then there are 2n events.

Example 1.1.1

throwing two coins with head and tail: Ω = {HH, TT, TH, HT}. �

Example 1.1.2

throwing a dice: Ω = {1, 2, 3, 4, 5, 6}.�
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Example 1.1.3

throwing a dart on a circular target of 30cm of diameter and the experiment should describe the
impact of the dart in an o.n. basis with center the center of the target: Ω = {(x, y), x2 + y2 ≤ 152}.
�

Example 1.1.4

Lifetime of an electric bulb: Ω = [0,+∞[. �

In a random experiment, one and only one elementary event occurs.
Thus, elementary events are non compatible: that is elementary events cannot occur at the same

time, and they are also exhaustive, that is Ω is exactly the union of all elementary events.
The realizations space can be finite or countably infinite: we then say that it discrete .
It could be also non countable infinite: we then say that it is continuous .

Example 1.1.5

To get familiar with this vocabulary, we may keep in mind the example of a throw of a dice
with 6 sides.

a) A possible result, for example 5, is a realization. It is denoted by ω.
b) All possible events, here {1, 2, 3, 4, 5, 6}, form the realizations space or the state space. It is

denoted by Ω.
c) An event is A ⊂ Ω. The opposite event is denoted by Ac.
d) We define the certain event as being Ω;
e) the impossible event is ∅;
f) the event A and B is A ∩ B;
g) the event A or B is A ∪ B;
h) we say that two events A and B are incompatible if A ∩ B = ∅.
�

1.2 The concept of a probability

Let us take the example of a throw of a dice with 6 sides.
We want to estimate the probability (that is the chance) to get ”2”. For this purpose, we proceed

to a large number N of throws (identical ones) and we count the number of ”2” out.
Denote by:
A: the (elementary) event: getting ”2”;
N(A): number of ”2” out.
We observe that the empirical frequency of success N(A)

N is close to 1/6 (if the dice is well bal-
anced), and then we can denote it by P(A), that is the ”probability” to obtain A.

The above facts can be generalized to any event A, so that we may define P(A) for all A, by using
these empirical frequencies.

In particuliar, we observe that

P(Ω) = 1, P(∅) = 0,
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and for two incompatible events A and B (that is such that A ∩ B = ∅), we have

P(A ∪ B) = P(A) + P(B).

Note that the function P so defined for all events, that it is a function from P(Ω) into R.
This is not always the case, that is the initial domain needs not be the full set P(Ω), but only

a subset T of it. But we will not give details in this lecture.
In the following, one can keep in mind that T is P(Ω).

Definition 1.2.1

A probability is a function P from T into [0, 1] such that:
- P(Ω) = 1 et P(∅) = 0.
- If Ai, i ∈ I, is an at most countable familly of two by two disjoint events, then (σ-additivity)

P(∪i∈I Ai) = ∑
i∈I

P(Ai)

We then say that (Ω, T , P) is a probability space .
The event A is said to be almost certain if P(A) = 1 and negligable if P(A) = 0.

Example 1.2.1

Throwing a dice: Ω = {1, 2, 3, 4, 5, 6}, T = P(Ω) and P({ω}) = P(ω) = 1/6, for all ω ∈ Ω. �

Example 1.2.2

Ω = IR and T constructed by finite or countable union or intersection of intervals of the type
[a, b], with (a, b) ∈ ZZ2. �

Example 1.2.3

Ω = IN and T = {A, B, Ω, ∅}, with A = {2n, n ∈ IN} et B = {2n + 1, n ∈ IN}. �

are two examples where T 6= P(Ω).

Proposition 1.2.1

For any events A and B in T , we have:

1. P(Ac) = 1− P(A);

2. P(A ∪ B) = P(A) + P(B)− P(A ∩ B);

3. P(A) ≤ P(B) if A ⊂ B;

4. If Ai, i ∈ I, is an at most countable family of two by two disjoint events, and covering Ω,
then

P(B) = ∑
i∈I

P(Ai ∩ B)
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Proof 1

Exercice.

Example 1.2.4

Ω is the set of points of the sphere (surface of the ball) of radius R in IR3. In that case, T is made
of sufficiently regular subsets of Ω. We can define the probability to find a fly X on a surface
element S of that sphere by

P(X ∈ S) =
1

4πR2 |S|

where |S| is the area of the surface element S. This is so if we identify the fly to be a point.
Otherwise, we need to take into account the contact surface between the fly and the sphere and
to take into account the scales. �

1.3 Case finite ou countably infinite

If Ω is at most countable, then we take T = P(Ω). It is then clear that the probability P is completely
determined by the values P(ω), for all ω ∈ Ω.

Indeed, one can show that, for all events A ∈ T , we have

P(A) = ∑
ω∈A

P(ω)

Example 1.3.1

We take Ω = {ω1, ω2}, thus containing two elements, with P(ω1) = p and P(ω2) = 1− p = q.
For example, this is the model used for the experiment ”throw of coin (head or tail)”, or more
generally for a random experiment with two possible outcomes only (ny first kid will be a boy or
a girl?).

In case Ω is finite, the most important example of a probability on Ω is the uniform probability:

Definition 1.3.1

If Ω if finite, we call uniform probability on Ω the probability P defined by

P(ω) =
1

card Ω
, for all ω ∈ Ω

In that case, for any event A, we have

P(A) =
card A
card Ω

1.3.1 Counting

We recall:
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- the number of permutations (or bijections) of {1, ..., n} is n!.
- the number of arrangements of k elements from n, or the number of injections from {1, ..., k} into

{1, ..., n} is Ak
n = n!

(n−k)! .

- the number of subsets with k elements in a set with n elements is Ck
n = n!

k!(n−k)! .
- We have the binomial formulae:

(x + y)n =
n

∑
k=0

Ck
nxkyn−k

Example 1.3.2

Let us consider a group of n students. We assume there is no leap years. We want to compute the
probability pn to have that two students at least have the same anniversay day.

For that purpose, we define the probability space firstly: Ω = {1, ..., 365}n; here ω = (ω1, ..., ωn),
where ωi is the anniversary day of the student i. We choose the uniform probability on Ω (which
is far from being a good choice). We denote by A the event ”at least two students have the same
anniversary day”. Thus we have

pn = P(A) = 1− P(Ac)

On the other hand, Ac is the event ”all students have different anniversary day”.
That is Ac = {ω, ωi 6= ωj, ∀i 6= j}. Its number of elements is the number of injections from
{1, ..., n} into {1, ..., 365}. We find finally that

pn = 1− 365!
(365− n)!365n if n ≤ 365 and 1 otherwise.

For example, we find that
p22 ' 0, 476, p23 ' 0, 507, p366 = 1.

�

1.3.2 Drawing and Urns

This section is difficult. We suggest, while doing an exercice, to compute from scratch the results.
Do not try to remember the results of this section. However, keep in mind the different types of
drawing.

Let N balls with k different colors: N1 balls with color 1, ..., Nk balls with color k.
We define the proportion of balls of color i by

pi = Ni/N.

Experiment: we draw at random n balls from the urn, with n ≤ N.

Problem: we want to consider the distribution (frequency) of obtained colors, and more precisely
the number

Pn1n2...nk

5



1.3. CASE FINITE OU COUNTABLY INFINITE CHAPTER 1. PROBABILITY SPACES

which is the probability to obtain n1 balls of color 1..., with n1 + n2 + ... + nk = n.
Here we need to precise the concept of drawing: drawing with reset, drawing without reset,

simultaneous drawing.

a) Simultaneous drawing

We draw all balls in the same time.
Here, Ω is the set of all sets of length n of distinct elements, among N, thus whose number is Cn

N .
Since the number of cases giving the requested distribution of colors is

Cn1
N1

...Cnk
Nk

,

we deduce that

Pn1n2...nk =
Cn1

N1
...Cnk

Nk

Cn
N

This is called the polygeometric distribution .
When we have exactly two colors,

Pn1,n−n1 =
Cn1

N1
Cn−n1

N−N1

Cn
N

is the hypergeometric law .

Example 1.3.3

In a production in series, we know that among N machined components, M are defective. If
we take at random a sample of n components, then the probability that this sample contains k
defective components is

Ck
MCn−k

N−M

Cn
N

.

�

b) Drawing with reset

Here the drawings are successively done, and with reset of the drawn ball each time.
Ω is thus the set of n-couples of elements from the urn. Thus Card Ω = Nn, and we take the

uniform probability over Ω.
The number of n-couples with distribution n1, ...,nk is:

n!
n1!n!...nk!

Nn1
1 ...Nnk

k .

Indeed, the number of ways to fix the locations of the k colors among n is equal to the number of
ways to divide n into k parts of size ni, thus explaining the first factor. Then, once the location of
colors is fixed, we have Ni possibilities for each ball of color i. Thus

Pn1...nk =
n!

n1!n!...nk!
Nn1

1 ...Nnk
k

Nn .
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This is the multinomial distribution .
If k = 2, p1 = p and p2 = 1− p, we obtain the probability

Pn1,n−n1 = Cn1
n pn1(1− p)n−n1 .

which is the binomial law with parameters n and p .

c) Drawing without reset

We draw the balls successively, but without reset. Ω is the set of all sequences of n distinct
elements among N, whose number is An

N .
One can show that we obtain the same probability as in the simultaneous drawing.
Thus we have equivalence between drawing without reset and simulatneaous drawing .

Example 1.3.4

We draw at random 4 cards from a deck of 52 cards. We want to know the probability that, among
these 4 cards, there is exactly 2 kings.
For that purpose, we take Ω the set of parts with 4 elements of 52 cards.... we are in the case
”simultaneous drawing” .... �

Example 1.3.5

Let 20 components of type I, among which 5 are defective, and 30 components of type II, among
which 15 are defective. We want to build a system composed of 10 components of type I and of
5 components of type II, placed in series. We want to compute the probability for the system to
operate, the components being choosen at random.

Here, the number of different systems that we may build is C20
10 ×C30

5 . The number of different
systems which could operate is C15

10 × C15
5 . Thus, using equiprobability, the sought probability is

C15
10 × C15

5

C20
10 × C30

5
' 0, 00034.

�

Example 1.3.6

[ Difficult; to be read if you have time] Let be given n particles and m > n boxes (which could
be thought as energy levels). We put at random each particle in a box. We want to find the
probability p that in n selected boxes, one and only one particle could be found.

We consider three types of realizations.
1. Maxwell-Boltzmann Statistics. If we accept as possible outcomes all the ways to put n

particles in n boxes, and distinguishing each particle, then

p =
n!
mn .

2. Bose-Einstein Statistics. If we assume that particles could not be distinguished, then

p =
(m− 1)!n!
(n + m− 1)!

.
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3. Fermi-Dirac Statistics. If we do not distinguish particles and if we assume that in each box,
we may put at most one particle, then

p =
n!(m− n)!

m!
.

�

1.4 Geometric Probabilities

Let Ω be a regular and bounded subset of IRn. One often uses the following probability

P(A) =
|A|
|Ω|

where |A| and |Ω| are the measure of these subsets, that is the length, area or volume in dimension
1, 2 ou 3 respectively. Then, we construct T by finite intersection and union, at most in a countable
way, of blocks.

Example 1.4.1

Ω = [a, b] ⊂ IR; we take

P([c, d]) =
d− c
b− a

.

�

Example 1.4.2

Two persons select at random one point in [0, 1]. Let x and y be the outcomes of these experiments,
We want to compute the probability to have |x− y| bigger than u, where u is a fixed value in [0, 1].

We take the following model: Ω = [0, 1]× [0, 1], P(A) = |A|, A being a subset of Ω of area
|A|. A point of Ω (experiment outcome) satisfies |x − y| > u if it belongs to D1 or to D2, where
D1 and D2 are the corners of the unit square (draw a picture) of diagonal length u. The event A
whose probability is looked after, is then identified with D1 ∪ D2 of area (1− u)2. Thus

P(A) = (1− u)2.

�

Example 1.4.3

Compute the probability P for a point choosen at random, inside a sphere of radius R, to be closer
to the center than to the surface of the sphere?

We find

P =
4
3 π(R

2 )
3

4
3 πR3

=
1
8

.

�
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Example 1.4.4

Bertrand paradox. Let be given a circle of radius r. We want to compute the probability p to
have the length l of a segment AB, with A and B taken on the circle, the segment being picked at
random, bigger than the length r

√
3 of the inner equilateral triangle.

In fact, we have at least three solutions.
1. If the center M of the cord AB is inside the circle C1 of radius r/2 (with the same center as C),

then r > r
√

3. We can then expect cases as being favorable as those cases where these points are
inside C1, and as all possible outcomes, the set of points inside C1. Using geometric probabilities,
we can deduce that

p =
πr2/4

πr2 =
1
4

.

2. We assume that the endpoint A is fixed. This reduces the number of outcomes but it has
no effect on the value of p because the number of possible positions for B is then consequently
reduced. If B is on the cord of 120◦, then this is ok, that is the farovable outcomes. We find

p =
2πr/3

2πr
.

3. Lastly, we assume that the direction AB is orthogonal to a fixed diameter FK. If the center
M of AB is between G and H, this is ok, that is the favorable cases. Then we get

p =
r

2r
=

1
2

.

�

1.5 Conditional Probabilities

Let us take the example of throwing two well balanced dices.
We want to compute the probability of:

A: ”the sum of the two dices is bigger than 10”,

knowing that

B: ”the second gives 5”.

We find that the empirical frequency is

N(A ∩ B)
N(B)

=
N(A ∩ B)

N
N

N(B)
,

that is P(A∩B)
P(B) .

We deduce that an additional à priori information changes the sought probability.
More generally, if Ω is the set of events associated to a random experiment E , if A and B are two

events, and if we assume that when performing this experiment, that B has occured, then B becomes
the new space of events, and for A to occur, we must have that A ∩ B has occured.
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Definition 1.5.1

Let A and B be two events, with P(B) 6= 0. We call probability (conditional) of A knowing B, the
number

P(A|B) ≡ P(A ∩ B)
P(B)

.

If we set P|B(A) = p(A|B), then one can show that P|B satisfies the axioms of a probability. For
example, we can write

P(Ac|B) = 1− P(A|B).
One can also show that

Proposition 1.5.1

Multiplication Rule If P(B) 6= 0, then

P(A ∩ B) = P(A|B)P(B)

and if P(A) 6= 0, then
P(A ∩ B) = P(B|A)P(A)

Example 1.5.1

Two components picked at random (one by one) and without reset from a box containing ten with
brand A and ten with brand B. What is the probability to get a) two components with brand A?
b) two components with same brand? c) two components with different brand?

Let Ak: a component with brand A is obtained at drawing number i. We look for

P(A1 ∩ A2) = P(A2|A1)P(A1) =
9

19
× 10

20
=

9
38

.

We may also use the multiplication rule to write

P(A1 ∩ A2) = P(A1|A2)P(A2).

but we cannot use this formula to reach the result.
b) the problem is symmetric, because there are as many components of brand A than brand B,

the preceding result gives that the sought probability is 2. 9
38 = 9

19 .
c) we deduce from b) that the sought probability is 1− 9

19 = 10
19 .

�

Proposition 1.5.2

Bayes formula If P(A).P(B) 6= 0, then

P(A|B) = P(B|A)P(A)

P(B)
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Definition 1.5.2

Partition Let B1, B2, ..., Bn be a sequence (eventually countable) of two by two disjoint events
and whose union covers the events space Ω. This is called a partition of Ω.

We often assume that these events are of non zero probabilities. The most simple example is given
by A and Ac. One can show

Proposition 1.5.3

Total Probability Rule If (Bi)i∈IN is a partition of Ω, then for all A ⊂ Ω, we have

P(A) = ∑
k∈N

P(A ∩ Bk) = ∑
k∈N

P(A|Bk)P(Bk)

if P(Bk) > 0 for all k.

Finally, we get

Proposition 1.5.4

Bayes Rule
Let (Bi)i be a partition of Ω with nonzero probabilities. Then for all A ⊂ Ω, we have

P(Bj|A) =
P(A|Bj)P(Bj)

∑k P(A|Bk)P(Bk)
for all j

Example 1.5.2

Let consider a communication system which emits either a 0, or a 1. Because of noise, the emitted
signal is incorrectly received. We define the events

Ei : i is emitted and Ri : i is received

for i = 0 and 1. We assume that P(R0|E0) = 0, 7, P(R1|E1) = 0, 8 and that the 0 is emitted 60% of
time.

a) compute P(E0|R1)
b) compute the probability to have a transmission error.
a) We have

P(E0|R1) =
P(R1|E0)P(E0)

P(R1|E0)P(E0) + P(R1|E1)P(E1)

=
(1− 0, 7)(0, 6)

(1− 0, 7)(0, 6) + (0, 8)(0, 4)
= 0, 36.

b)
P(transmission error ) =

= P(E0 ∩ R1) + P(E1 ∩ R0) = P(R1|E0)P(E0) + P(R0|E1)P(E1)

11
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= (1− 0, 7)(0, 6) + (1− 0, 8)(0, 4) = 0, 26.

Note that the events E0 and E1 form a partition of Ω. This is so also for R0 and R1. �

Definition 1.5.3

Two events A and B are called independent iff

P(A ∩ B) = P(A)P(B).

Remark 1.5.1

Two independent events may or not be incompatible. If they are independent and incompatible,
then P(A) or P(B) or both are zero.

Proposition 1.5.5

Two events A and B wth non zero probability are independent iff

P(A|B) = P(A) or P(B|A) = P(B)

If A and B are independent, then Ac and B are too. Similarly for A et Bc, for Ac et Bc.

Example 1.5.3

In a factory, 96% of manufactured computers comply to official standards. Each computer is
assessed to two independent control schedules. We assume that each of these operations assess
good 98% of units which are effectively good, and 6% of units which are not compliant to the
standards. Compute the probability that a delivered unit is effectively good.

Let
A: the unit satisfied the control schedules.
B: the unit is good.
We look for

P(B|A) =
P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)

=ind
(0, 98)2(0, 96)

(0, 98)2(0, 96) + (0, 06)2(0, 04)
' 0, 9998.

Note that B1 = B and B2 = Bc form a partition of Ω. If Ak denotes : the unit has satisfied the
control schedule number k, then we can write A = A1∩ A2. Note that A1 and A2 are conditionally
independent wrt B and wrt Bc but are not independent. �

Example 1.5.4

A person competes in a game show. At the end, he is in front of three doors and he has to choose
one. Behind one of them, is hidden the big jackpot, put there at random. There is nothing behind
the other two. The game’s host knows where is hidden the jackpot. Assume that the person

12
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chooses door 1 and that the host tells him that the person was right not to choose door number 3
because there is nothing behind that one. He then offers him the possibility to change the door,
and so to choose door number 2. What is the possibility that the person wins the jackpot, if she
decides to keep door 1?

Let Ak: the jackpot is behind door k for k = 1, 2, 3. Let F: the host eliminates door 3. Assume
that if the person chooses the good door, then the host eliminates door 3 with probability 1/2. In
that case,

P(F) = P(F|A1)P(A1) + P(F|A2)P(A2) + P(F|A3)P(A3) =
1
2

1
3
+ 1

1
3
+ 0 =

1
2

thus

P(A1|F) =
P(F|A1)P(A1)

P(F)
=

1/6
1/2

=
1
3

.

Thus the person has a probability of 2/3 to win the jackpot if she decides to change the door.
In general, if there are n doors, and if the host eliminates n − 2 (he does not eliminate the one
choosen by the person), then the probability that the jackpot is hidden behind the only remaining
door, among the n− 1 doors still in play, is (n− 1)/n. �

Example 1.5.5

(The liars) A says that B told him that C has lied. If the three persons are saying the truth with
a probability p ∈ (0, 1), and so independently of each person, what is the probability that C has
been effectively lying?

Let F: A says that B told him that C has lied, and FI : I lied, for I = A, B, C.
We look for

P(FC|F) =
P(F|FC)P(FC)

P(F|FC)P(FC) + P(F|Fc
C)P(Fc

C)
.

Or on a
P(F|FC) = P(Fc

A ∩ Fc
B) + P(FA ∩ FB) =ind p2 + (1− p)2

et
P(F|Fc

C) = P(Fc
A ∩ FB) + P(FA ∩ Fc

B) =ind 2p(1− p)

Donc

P(FC|F) =
[p2(1− p)2](1− p)

[p2 + (1− p)2](1− p) + [2p(1− p)]p
=

p2 + (1− p)2

3p2 + (1− p)2 .

Note that if p = 1/2, then we find 1/2 which is quite reasonable. �
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1.6 Exercices

1. Let P be a probabily defined over a finite set with 4 elements Ω = {a, b, c, d}. We choose T as
being the set of all subsets of Ω. Compute P(a) for each of the following cases:

(a) P(b) = 1/4, P(c) = 1/6, P(d) = 1/5;

(b) P(a) = 3P(b), P(c) = P(d) = 1/4;

(c) P({b, c, d}) = 2p(a);

(d) P(b) = P(a), P(c) = 2p(b), P(d) = 3P(c).

Hints: Use the additivity of a probability. (a) P(a1) = 23
60 . (b) P(a1) = 3

8 . (c) P(a1) = 1
3 . (d)

P(a1) =
1

10 .

2. Consider events A and B such that

P(A) = 1/2, P(A ∪ B) = 3/4 et P(B̄) = 5/8

Find P(A ∩ B), P(Ā ∩ B̄), P(Ā ∪ B̄) et P(B ∩ Ā).

Hints: Use probability of an union, complementary set, Morgan laws. P(A ∩ B) = 1
8 , P(Ā ∩

B̄) = 1
4 , P(∩A ∪ B̄) = 0, 875, P(B ∩ Ā) = 1

4 .

3. In a lottery, 5 balls are drawed, at random and without reset, among 25 balls numbered from 1
to 25. We get the jackpot if the 5 balls are picked with the indicated order.

(a) What is the probability to gain the jackpot?

(b) What is the probability not to gain the jackpot because of only one ball?

Hints: a) P(jackpot) = 1
A25

5
= 20!

25! = ... = 1
6.375.600 ; b) the number of outcomes where only one

ball is wrong is given by C5
1 × 20. Thus the sought probability is 100

6.375.600 .

4. (Car) Licence plates are made with three letters followed by four numbers (from 0 to 9). We
asume that letters I and O are never used and that no plate is made using the number 0000.

(a) How many different plates could we get?

(b) What is the answer in a), if morever, no plate contains three identical letters, nor four
identical numbers?

Hints: a) the number of identical plates is

(24× 24× 24)× (104 − 1) = 138.226.176

b) in that case, the total number of different plates is given by

(243 − 24)× (104 − 10) = (13.800)(9990) = 137.862.000

5. We throw p well balanced dices with n sides numbered from 1 to n. What is the probability to
get:

14
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(a) exactly one 1?

(b) at least one 1?

(c) at most one 1?

(d) exactly two 1?

Hints: Here Ω is the set of ordered p-uplets of numbers between 1 and n (eventually with
repetition). Thus cardΩ = np. (a) the number of favorable cases is C1

p(n− 1)p−1, as there are C1
p

ways to choose the location of 1 among the p numbers of the p-uplet, then, once this location
choosen, the other locations should be numbers between 2 and n, whose number is n− 1. (b)
Using complementary event, the number of p-uplets without 1 is (n− 1)p, thus the number of
favorable cases is np − (n− 1)p. (c) we count the number of p-uplets with only one 1, that is
p(n− 1)p−1 and the number of p-uplets without 1, that (n− 1)p, and we add. (d) The number
of favorable cases is C2

p(n− 1)p−2. We may also use the model of urn with two categories (here
with or without 1, with reset).

6. Compute the probability for the sum of numbers choosen at random in [0, 1] not to exceed 1
and the product be less than 2/9.

Indications: Here Ω is the set of couples (x, y) in [0, 1], with the geometric probability, that is
the area. We want x + y ≤ 1 and xy ≤ 2

9 . The area is 1
3 +

2
9 log 2.

7. We throw two well balanced dices with 6 sides. Compute the probability for:

(a) the sum of obtained numbers on the two dices to be bigger than 9, knowing that we have
at least one 6.

(b) to have one 4 on a dice, knowing that we have at least one 2.

(c) the sum of obtained numbers of the two dices to be 5 knowing that the difference between
the biggest and lowest values is equal to 4.

Hints: Here Ω is the set of ordered sequences of two numbers taken with repetition among
{1, ..., 6}. Denote by S the sum and by D the difference. (a) Let A = ”at least one 6”. Then

P(S ≥ 9|A) =
P(S ≥ 9∩ A)

P(A)

and we find by counting 7/36
11/36 . (b) Similarly, we find 2/36

11/36 . (c) We have card ”D = 4” = 4. And
card ”S = 5”∩ ”D = 4” = 0. Therefore the probability equals 0.

8. A class of students has 10 boys, half of which have brown eyes, and 20 girls, half of which with
brown eyes too. Compute the probability that a student taken at random:

(a) is a boy;

(b) has brown eyes;

(c) is a boy or has brown eyes.

Hints: No serious issues.

15
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9. Let A and B events such that P(A ∩ B) = P(Ac ∩ B) = P(Ac ∩ B) = P(A ∩ Bc) = p. Compute
p(Ac ∩ Bc) and P(Ac ∪ Bc).

Hints: P(Ac ∩ Bc) = 1− P(A ∪ B) = 1− 3p and P(Ac ∪ Bc) = 1− P(A ∩ B) = 1− p.

10. A communication system transmits 3 signals, s1, s2 et s3, with the same probability. Received
signals could be inaccurate, because of noise. We find, experimentally, that the probability pij
for receiving signal sj, knowing that signal si was emitted is given by the following table: on
row (line) emitting, and in column, receiving

s1 s2 s3
s1 0, 8 0, 1 0, 1
s2 0, 05 0, 90 0, 05
s3 0, 02 0, 08 0, 90

(a) What is the probability that signal s1 was emitted, knowing that signal s2 has been re-
ceived?

(b) If we assume that emitting signals are independent, what is the probability to receive two
signals s3 consecutively?

Hints: Let Ei: signal si was emitted, and Ri: signal si has been received, for i = 1, 2, 3. a) we
look for

P(E1|R2) =
P(R2|E1)P(E1)

P(R2)
=

(0, 1)(1/3)
0, 36

' 0, 0926

as

P(R2) =
3

∑
i=1

P(R2|Ei)P(Ei) =
1
3
[0, 1 + 0, 9 + 0, 08] = 0, 36

b) we have

P(R3) =
3

∑
i=1

P(R3|Ei)P(Ei) =
1
3
[0, 1 + 0, 05 + 0, 90] = 0, 35

Then, using independence, the probability to receive two consectuive signals s3 is given by
(0, 35)2 = 0, 1225.

11. From collected data, it appears that 40% of human beings have type A blood, 10% type B, 45%
type O and 5% type AB. Moreover, we know that 90% of persons of type O will be checked
correctly, while 3% of persons of type B, 10% of type AB and 2% of type A will be checked as
type O.

(a) What is the probability that a person of type O will be effectively of this type?

(b) If we assume independence of events, what is the probability that two given persons of
type O are not of this type?

Hints: Let O: the person is of type O, C0: the person is checked as being of type O, similarly for
the other types.

a) We look for

16
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P(O|CO) =
P(CO|O)P(O)

P(0)
=

(0, 90)(0, 45)
0, 4210

' 0, 9620

as
P(CO) = P(CO|A)P(A) + ... + P(CO|AB)P(AB) = 0, 4210

b) we have P(Oc|CO) = 1− P(O|CO) 'a) 0, 0380. Then, using independence, the sought prob-
ability is (0, 0380)2 ' 0, 0014.
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