Mathematics for Physicists Lecture 1 Line integrals

Radjesvarane ALEXANDRE

radjesvarane.alexandre@usth.edu.vn
or alexandreradja@gmail.com
University of Science and Technology of Hanoi

Basic facts on paths

Definition 1.1

A path of \mathbb{R}^{n} is a map $c: I \rightarrow \mathbb{R}^{n}$, with $I=[a, b]$. The subset of $\mathbb{R}^{n} \mathcal{C}=c([a, b])$ is called the curve parametrized by the path c. $c(a)$ and $c(b)$ are the enpoints of the curve \mathcal{C}. We way also that c is a parametrization of the curve \mathcal{C}.

Example 1.1

Let $c:[0,1] \rightarrow \mathbb{R}$ be given by

$$
c(t)=\left(x_{0}, y_{0}, z_{0}\right)+t v
$$

where $\left(x_{0}, y_{0}, z_{0}\right)$ is a fixed point of \mathbb{R}^{3} and v a non null vector of \mathbb{R}^{3}. Then the curve associated with this path c is the segment of $\mathbb{R}^{3}\left[\left(x_{0}, y_{0}, z_{0}\right) ;\left(x_{0}, y_{0}, z_{0}\right)+v\right]$.

Example 1.2

Let $c:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ be given by

$$
c(t)=(\cos t, \sin t)
$$

Then the associated curve \mathcal{C} is the unit circle of \mathbb{R}^{2}.

Definition 1.2

If c is a continuous map, derivable (or differentiable) ..., we say that the path c is continuous, derivable, The velocity vector at time t at point $c(t)$ is the vector $c^{\prime}(t)$. The speed at time t and point $c(t)$ is the norm of this vector, that is $\left\|c^{\prime}(t)\right\|$.

Remark 1.1

The velocity $c^{\prime}(t)$ is a vector tangent to the path c. We say also that it is tangent to the curve \mathcal{C} parametrized by c.

Path integrals

Definition 1.3

Let $c:[a, b] \rightarrow \mathbb{R}^{n}$ be a path of class C^{1} (by pieces). We call length of c the number

$$
L(c) \equiv \int_{a}^{b}\left\|c^{\prime}(t)\right\| d t
$$

More generally, we have the following definition

Definition 1.4

With the same previous assumptions, let moreover $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous function (at least in a neighborhood of \mathcal{C}). Then we define

$$
\int_{c} f(s) d s \equiv \int_{a}^{b} f(c(t))\left\|c^{\prime}(t)\right\| d t
$$

If $f=1$, we recover the length of the path c.
Explanations: work with a path $c:[a, b] \rightarrow \mathbb{R}^{3}$. Make polygonal approximations.
Subdivision of order N of $[a, b]$. Consider the polygonal lines based on points $c\left(t_{i}\right)$, where

$$
a=t_{0}<t_{1}<\ldots<t_{N}=b, t_{i+1}-t_{i}=\frac{b-a}{N}, 0 \leq i \leq N-1
$$

Length of c will be almost equal to the length of this broken line, for N large enough, that is

$$
S_{N}=\sum_{i=0}^{N-1}\left\|c\left(T_{i+1}\right)-c\left(t_{i}\right)\right\|
$$

If $c(t)=(x(t), y(t), z(t))$, for $x(t), y(t)$ and $z(t)$ on the interval $\left[t_{i} ; t_{i+1}\right]$, there exists $t_{i}^{*}, t_{i}^{* *}, t_{i}^{* * *}$ such that

$$
\begin{aligned}
& x\left(t_{i+1}\right)-x\left(t_{i}\right)=x^{\prime}\left(t_{i}^{*}\right)\left(t_{i+1}-t_{i}\right) \\
& y\left(t_{i+1}\right)-y\left(t_{i}\right)=y^{\prime}\left(t_{i}^{* *}\right)\left(t_{i+1}-t_{i}\right) \\
& z\left(t_{i+1}\right)-z\left(t_{i}\right)=z^{\prime}\left(t_{i}^{* * *}\right)\left(t_{i+1}-t_{i}\right)
\end{aligned}
$$

And thus, we obtain

$$
S_{N}=\sum_{i=0}^{N-1} \sqrt{x^{\prime}\left(t_{i}^{*}\right)^{2}+y^{\prime}\left(t_{i}^{* *}\right)^{2}+z^{\prime}\left(t_{i}^{* * *}\right)^{2}}\left(t_{i+1}-t_{i}\right)
$$

Here is an important case. Assume that \mathcal{C} is a plane curve, for example contained in the plane $(x 0 y)$ of \mathbb{R}^{3}. Let f be a positive function of variables x and y. Then $\int_{c} f(s) d s$ is the area of the lateral surface.

Line integrals

\vec{F} a force field of \mathbb{R}^{3} that is a map from \mathbb{R}^{3} into \mathbb{R}^{3}. Assume that this field acts on a given particle of \mathbb{R}^{3} and this particle is moving along a fixed curve \mathcal{C} and that is submitted to this force field \vec{F}.
\rightarrow compute the work done by this field \vec{F} on this particle.
If \mathcal{C} is a line segment, for example, directed by a vector \vec{d}, with
$\|\vec{d}\|$ being the length of \mathcal{C}, then the corresponding work is given by

$$
T_{\mathcal{C}}(\vec{F})=\vec{F} \cdot \vec{d}
$$

If now, \mathcal{C} is no more a line segment,

$$
T_{\mathcal{C}}(F) \equiv \int_{a}^{b} \vec{F}(c(t)) \cdot c^{\prime}(t) d t
$$

where c is a parametrization of the curve \mathcal{C} and giving the position of the particle on the curve \mathcal{C}.
Explanation : note that in the case where \mathcal{C} is a line segment, we recover the first formula. Otherwise, $t \in[t, t+\Delta t]$ with Δt small. Then the particle will move from $c(t)$ to $c(t+\Delta t)$. The corresponding displacement vector is thus

$$
\overrightarrow{\Delta s}=c(t+\Delta t)-c(t) \simeq c^{\prime}(t) \Delta t
$$

The work between $c(t)$ and $c(t+\Delta t)$ will then be almost equal to

$$
\vec{F}(c(t)) \cdot \overrightarrow{\Delta s} \simeq \vec{F}(c(t)) \cdot c^{\prime}(t) \Delta t
$$

Now if we divide the interval $[a, b]$ along a regular subdivision of order N as above, with $\Delta t=t_{i+1}-t_{i}$, the total work done by \vec{F} will be almost equal to

$$
\sum_{i=0}^{N-1} \vec{F}\left(c\left(t_{i}\right)\right) \cdot \overrightarrow{\Delta s} \simeq \sum_{i=0}^{N-1} \vec{F}\left(c\left(t_{i}\right)\right) \cdot c^{\prime}\left(t_{i}\right) \Delta t
$$

Definition 1.5

Let $\vec{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a force field, continuous in a neighborhood of the path $c, c:[a, b] \rightarrow \mathbb{R}^{n}$ (class C^{1}). Then we define the line integral of \vec{F} along c, or in other words, the work of \vec{F} on c as the number defined by

$$
\int_{c} \vec{F} \cdot d s \equiv \int_{a}^{b} \vec{F}(c(t)) \cdot c^{\prime}(t) d t
$$

Example 1.3

$c(t)=(\sin t ; \cos t, 0), 0 \leq t \leq 2 \pi$, et $F=(x, y, z)$.
Definition 1.6
Notation : With the above assumptions and notations, we also denote, if $\vec{F}=\left(F_{1}, F_{2}, F_{3}\right)$, and $n=3$

$$
\int_{c} \vec{F} \cdot d s=\int_{c} F_{1} d x+F_{2} d y+F_{3} d z
$$

Thus if $c(t)=(x(t), y(t), z(t))$, we have

$$
\begin{gathered}
\int_{c} F_{1} d x+F_{2} d y+F_{3} d z= \\
\int_{a}^{b}\left[F_{1}(c(t)) x^{\prime}(t)+F_{2}(c(t)) y^{\prime}(t)+F_{3}(c(t)) z^{\prime}(t)\right] d t
\end{gathered}
$$

Example 1.4

Compute $\int_{c} x^{2} d x+x y d y+d z$ with $c(t)=\left(t, t^{2}, 1\right)$ and $0 \leq t \leq 1$.

Example 1.5

Compute $\int_{c} \cos z d x+e^{x} d y+e^{y} d z$ with $c(t)=\left(1, t, e^{t}\right)$ and $0 \leq t \leq 2$.
$\int_{c} \vec{F} . d s$ depends on \vec{F} but also on the path c.
What is the link with the associated curve \mathcal{C} ?
If c_{1} and c_{2} are two different paths, but parametrizing the same curve \mathcal{C}, we do not have

$$
\int_{c_{1}} \vec{F} \cdot d s=\int_{c_{2}} \vec{F} \cdot d s ?
$$

However, there are cases where

$$
\int_{c_{1}} \vec{F} \cdot d s=\mp \int_{c_{2}} \vec{F} \cdot d s
$$

Definition 1.7
Let $h: I \rightarrow I_{1}$ be a C^{1} bijective map with $I=[a, b]$ and
$I_{1}=\left[a_{1}, b_{1}\right]$. Let $c: I_{1} \rightarrow \mathbb{R}^{n}$ be a path of class C^{1} (by pieces).
Then $p=c \circ h: I \rightarrow \mathbb{R}^{n}$ is a parametrization of c.
In fact we have $\operatorname{Im} c=\operatorname{Im} p$. Thus c and p are two parametrizations of the same curve \mathcal{C}.

As we have $p^{\prime}(t)=c^{\prime}(h(t)) \cdot h^{\prime}(t)$, we note that:

1) if h is stricly increasing, $h(a)=a_{1}$ and $h(b)=b_{1}$.
2) if h is strictly decreasing, $h(a)=b_{1}$ and $h(b)=a_{1}$.

Thus, we have one of the two following cases:

1) $c \circ h(a)=c\left(a_{1}\right)$ and $c \circ h(b)=c\left(b_{1}\right)$
2) or $c \circ h(a)=c\left(b_{1}\right)$ and $c \circ h(b)=c\left(a_{1}\right)$

In the first case, we say that the re-parametrization preserves the orientation, while in the second case, it reverses the orientation.
If we preserve the orientation, a particle moving on \mathcal{C} according to
$c \circ h$ will move in the same direction as along c.

Example 1.6

If $c:[a, b] \rightarrow \mathbb{R}^{3}$ is C^{1} then

$$
c_{o p}:[a, b] \rightarrow \mathbb{R}^{3}, c_{o p}(t)=c(a+b-t)
$$

is a reparametrization of c reversing the orientation.

Theorem 1.1

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a vector field, continuous in a neighborhood of the path of class $C^{1} c:[a, b] \rightarrow \mathbb{R}^{n}$. Let $p:\left[a_{1}, b_{1}\right] \rightarrow \mathbb{R}^{n}$ be a reparametrization of c. Then

$$
\int_{p} F . d s=\mp \int_{c} F . d s
$$

with the sign + if p preserves the orientation of c and the sign if p reverses the orientation.

Example 1.7

Let $f(x, y, z)=(y z, x z, x y)$ and

$$
c:[-5 ; 10] \rightarrow \mathbb{R}^{3}, c(t)=\left(t, t^{2}, t^{3}\right)
$$

We find

$$
\int_{c} F . d s=984,375 \text { and } \int_{c_{o p}} F . d s=-984,375
$$

Theorem 1.2

(change of parametrization for the path integrals). Let c be a path of class C^{1} (by pieces), p any reparametrization of c and $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ a continuous map. Then

$$
\int_{c} f d s=\int_{p} f d s
$$

In the case when the field is a gradient, we have Theorem 1.3

Assume that $\vec{F}=\nabla f$, with $f: \mathbb{R}^{3} \rightarrow \mathbb{R} C^{1}$. Then

$$
\int_{c} F . d s=f(c(b))-f(c(a))
$$

Example 1.8

Let $c(t)=\left(4^{4} / 4, \sin ^{3}(t \pi / 2), 0\right), t \in[0,1]$. We want to compute $\int_{c} y d x+x d y$. Here $F=(y, x, 0)$ and thus $F=\nabla f$ avec $f=x y$. Thus

Definition 1.8

We define a simple curve \mathcal{C} as being the image of a path of class C^{1} (by pieces) c:I $\rightarrow \mathbb{R}^{n}$ injective on the interior of I. We then say that c is an adapted parametrization to \mathcal{C}

A simple curve corresponds to a curve which does not self intersect except eventually at the endpoints.
If $I=[a, b], c(a)=P$ and $c(b)=Q$ are the endpoints of \mathcal{C}. Any simple curve has two possible orientations. A curve equipped with one of these two orientations is called an oriented simple curve.

Definition 1.9

We say that a simple curve \mathcal{C} is closed if moreover we have $c(a)=c(b)$. Any simple and closed curve has two possible orientations.

Definition 1.10

Let \mathcal{C} be a simple orientated curve (eventually closed). Then we set

$$
\int_{\mathcal{C}} F . d s=\int_{C} F . d s
$$

where c is any parametrization but adapted and preserving the orientation of \mathcal{C}.

Be careful : we need to check each time that the parametrization is adapted and preserves the orientation.

Example 1.9

Let $c(t)=(\cos t, \sin t, 0)$ and $p(t)=(\cos 2 t, \sin 2 t, 0)$,
$0 \leq t \leq 2 \pi$, and $F=(y, 0,0)$. Then we find that

$$
\int_{c} F . d s=-\pi b u t \int_{p} F . d s=-2 \pi
$$

Note that Im $c=\operatorname{Im} p . p$ is not injective.

Proposition 1.1

Let \mathcal{C}^{-}the same curve as \mathcal{C} but with the opposite orientation. Then

$$
\int_{\mathcal{C}} F . d s=-\int_{\mathcal{C}^{-}} F . d s
$$

Remark 1.2
We may generalize all these facts to "sums" of oriented maps.

