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A random variable : quantity which depends only upon the result
of the (random) experiment :
- number of ”6” obtained when throwing 3 dices ;
- number of phone calls during one hour ...

Definition 1.1

Let (Ω, T , P) be a probability space. Let E ⊂ IRd be given. Any
map

X : Ω→ E , ω ∈ Ω→ X (ω)

is called a random variable on the probability space, valued in E .

If E ⊂ IR, we say that is a real random variable ;
If E ⊂ IRd , we say that it is a random vector.
So be careful : a random vector is a map.



Distribution function of rv

Definition 2.1

Distribution function of the real rv X :

FX (x) = P(X ≤ x), ∀x ∈ IR

Proposition 2.1

Properties : we have

1 0 ≤ FX (x) ≤ 1, lim+ ∞FX = 1, lim−∞ FX = 0 ;

2 FX is increasing (non decreasing)

3 FX is right continuous, that is FX (x) = FX (x
+) (right limit

at x).

Proposition 2.2

We have
P(a < X ≤ b) = FX (b)− FX (a)



Proposition 2.3

We have
P(X = x) = FX (x)− FX (x

−)

wher FX (x
−) is teh left limit at x.

Important : if FX is a continuous function, then the probability
P(X = x) is zero for any real x .
In that case, that is if the distribution function is continuous, we
have

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b)



Definition 2.2

Let X be a rv taking at most a countable number of values,
X (Ω) = {x1, x2, ...}. Then we say that X is a discrete rv.

Definition 2.3

Let X taking an infinite non countable number of values. If
FX is continuous, we say that X is a continuous rv.



Mass and density functions

Definition 3.1

Let X be a discrete rv, X (Ω) = {x1, x2, ...}. pX :

pX (xk) = P(X = xk), k = 1, 2, ...

= mass function of X = probability law of X.

Definition 3.2

Let X be a continuous rv. The function fX defined by (if it exists)

fX (x) =
d

dx
FX (x)

is called the probability density function of X.

Thus fX (x)dx ∼ probability that rv X takes value x in a small
interval of length dx around x .



Properties :
i) fX (x) ≥ 0, because FX is increasing ;
ii) ∫ x

−∞
fX (t)dt = FX (x)

− > ∫ +∞

−∞
fX (x)dx = FX (+∞) = 1

A positive function with this property is called a density (function).
Important property

P(a < X ≤ b) = FX (b)− FX (a) =
∫ b

a
fX (x)dx

The probability that X belongs to the interval (a, b] is given by the
area under the curve of fX from a to b.



Drv/Bernoulli law

Random experiment E. Let A ⊂ Ω and let X be the indicator rv of
this event A, that is X = 1 if we get A and 0 otherwise.
We say that X follows a Bernoulli law with parameter p, where
p = P(A) is the probability of a success. We have

x 0 1 Σ
pX (x) 1− p p 1

We may also write

pX (x) = pxq1−x , x = 0, 1

where q = 1− p. Here p is a known parameter.



DRV/Binomial laws

We repeat the previous experiment E n times.
We then say that the trials E1, ..., En form Bernoulli trials if
a) these trials are independent and
b) the probabillity of a success is the same for each trial.
Binomial law
X : number of success with n Bernoulli trials.
X follows a bionomial law with parameters n and p, where p is the
probability of one success. We have X (Ω) = {0, 1, ..., n}. We
write X ∼ B(n, p).
Probability law of X ∼ B(n, p) :

pX (k) = Cn
k pkqn−k , for k = 0, 1, ..., n



Geometric Law

X : number of necessary Bernoulli trials in order to obtain the first
success. Then X (Ω) = {1, 2, ...}.
X follows a geometric law with parameter p :X ∼ Geom(p).
In that case, we have

pX (k) = qk−1p, pour k = 1, 2, ...

We have :

FX (n) = ... = 1− qn et P(X > n) = qn, n = 1, 2, ...

As a last remark, it may happen that we can also define another X
denoted by Y, to be the number of Bernoulli trials before getting
the first success. In that case Y (Ω) = {0, 1, ..} and function pY

becomes
pY (k) = qkp, k = 0, 1, ..

Then Y = X − 1.



RV/ Poisson Law

Definition 4.1

Let X be a drv with X (Ω) = {0, 1, ..; } and

pX (k) =
e−ααk

k !
for k = 0, 1, ...

We then say that X follows a Poisson law with parameter α > 0.
We write X ∼ Poi(α).



CRV/ Uniform Law

We choose at random a number X in the interval [a, b].
If the density function of X is given by

fx (x) =
1

b− a
, a ≤ x ≤ b

we say that X follows a uniform law on the interval [a, b]. We

write X ∼ U(a, b).
Distribution function of X :

FX (x) = 0 if x < a,
x − a

x − b
if a ≤ x ≤ b, 1 if x > b

If [c , d ] ⊂ [a, b], then

P(c < X ≤ d) =
d − c

b− a

The probability for X to be in a given sub interval only depends on
the length of this interval.



CRV/ Exponential Law

We say that X defined on [0,+∞) follows an
exponential law with parameter λ if

fX (x) = λe−λx , x ≥ 0

We write X ∼ Exp(λ).
This is a density. The distribution function is given by

FX (x) = e−λx if x ≥ 0 and 0 if x < 0

In particuliar,

P(X > 0) = e−λx , x ≥ 0

.



CRV/ Gamma law

Gamma function Γ(.) :

Γ(α) =
∫ +∞

0
xα−1e−xdx

pour α > 0.
I.B.P − >

Γ(α) = (α− 1)Γ(α− 1), if α > 1

If α = n = 2, 3, ..., then

Γ(n) = (n− 1)!

Also :
Γ(1/2) =

√
π



Let X : a positive rv.
If its density function is given by :

fX (x) =
(λx)α−1λe−λx

Γ(α)
for x ≥ 0,

we say that X follows a
Gamma law wth parameters α > 0 and λ > 0.
We write X ∼ G (α, λ).

Remarks 5.1

i) α : shape parameter ; λ : scale parameter. As fX has a shape
which varies rapidly when parameter α takes different values,
Gamma law is very often used in applications.
ii) Gamma law = exponential law when α = 1.
iii) If α = n/2, n ∈ IN and λ = 1/2, Gamma law is also called
khi-square law with 2 to n degrees of freedom.



CRV/ Gaussian law

Let X be a rv with X (Ω) = IR. If the density function of X is of
the form

fX (x) =
1√
2πσ

exp{− (x − µ)2

2σ2
}, x ∈ IR

we say that X follows a
gaussian or normal law with parameters µ and σ2 with σ > 0.

We write X ∼ N(µ, σ2).
It is also called Laplace-Gauss law.
Parameter µ is a position paramter, while σ is a scale parameter.
All gaussian laws have a bell shape.



If µ = 0 and σ = 1 : X follows a standard normal law. Its
density function is given by

φ(z) ≡ 1√
2π

exp(−z2/2), z ∈ IR

and its distribution function denoted by Φ, is

Φ(z) =
∫ z

−∞
φ(y)dy =

1√
2π

∫ z

−∞
e−y

2/2dy

IF X ∼ N(µ, σ2), − > distribution function in terms of Φ :

FX (x) = Φ(
x − µ

σ
)

corresponding density function given by

fX (x) =
1

σ
φ(

x − µ

σ
)

That is we can obtain everything from the standard law N(0, 1).



Expectation and variance

Definition 6.1

The expectation or the mean of a rv X, denoted by E (X ) or
equivalently by < X > is defined by

E (X ) ≡ µX =

 ∑∞
k=1 xkpX (xk) if X is discrete∫ ∞
−∞ xfX (x)dx if X is continuous.

The expectation is linear.

Proposition 6.1

Let X be a rv and Y = g(X ). Then we have

E (Y ) =

{
∑∞

k=0 g(xk)pX (xk) if X is discrete∫ ∞
−∞ g(x)fX (x)dx if X is continuous



Definition 6.2

The variance of rv X is defined by

Var(X ) = σ2
X = E ((X − E (X )2)

If X has a density fX , then we have

σ2
X =

∫ ∞

−∞
(x − µ)2fX (x)dx

with µ = E (X ). The standard deviation is defined by

STD(X ) = σX =
√

Var(X )

We have
Var(aX + b) = a2Var(X )

and
Var(X ) = E (X 2)− (E (X ))2



Law Parameters Mean Variance

Bernoulli p p pq
Binomial n et p np npq

Geometric p 1/p q/p2

Poisson α α α

Law Parameters Mean Variance

Uniform [a, b] (a + b)/2 (b− a)2/12
Exponential λ 1/λ 1/λ2

Gaussian µ and σ2 µ σ2



Theorem 6.1

Bienaymé-Tchebychev inequality Let X be a rv with mean
E (X ) = µ and variance Var(X ) = σ2. Then for any a > 0, we
have

P(|X − µ| ≥ a) ≤ σ2

a2

Theorem 6.2

Markov inequality Let X be a positive rv. Then, for any a > 0

P(X ≥ a) ≤ E (X )

a
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