Probability and Statistics Lecture 2 Random variables

Radjesvarane ALEXANDRE

radjesvarane.alexandre@usth.edu.vn or alexandreradja@gmail.com University of Science and Technology of Hanoi

Plan

- 1 Distribution function of real rv
- 2 Mass and density functions
- 3 Important examples of discrete rv (drv)
 - Bernouilli law
 - Bernoulli trials and Binomial Law
 - Geometric Law
 - Poisson law
- ④ Examples of continuous rv
 - Uniform Law
 - Exponential Law
 - Gamma law
 - Gaussian law

5 Expectation and variance

A **random variable** : quantity which depends only upon the result of the (random) experiment :

- number of "6" obtained when throwing 3 dices;
- number of phone calls during one hour ...

Definition 1.1

Let (Ω, \mathcal{T}, P) be a probability space. Let $E \subset \mathbb{R}^d$ be given. Any map

$$X:\Omega o E, \omega \in \Omega o X(\omega)$$

is called a <u>random variable</u> on the probability space, valued in E.

If $E \subset \mathbb{R}$, we say that is a <u>real random variable</u>; If $E \subset \mathbb{R}^d$, we say that it is a <u>random vector</u>. So be careful : a random vector is a map.

Distribution function of rv

Definition 2.1

Distribution function of the real rv X :

$$F_X(x) = P(X \le x), \ \forall x \in I\!\!R$$

Proposition 2.1

Properties : we have

1
$$0 \le F_X(x) \le 1$$
, $\lim_{x \to \infty} F_X = 1$, $\lim_{x \to \infty} F_X = 0$;

• F_X is right continuous, that is $F_X(x) = F_X(x^+)$ (right limit at x).

Proposition 2.2

We have

$$P(a < X \le b) = F_X(b) - F_X(a)$$

Proposition 2.3

We have

$$P(X = x) = F_X(x) - F_X(x^-)$$

wher $F_X(x^-)$ is teh left limit at x.

Important : if F_X is a continuous function, then the probability $\overline{P(X = x)}$ is zero for any real x. In that case, that is if the distribution function is continuous, we have

 $P(a \leq X \leq b) = P(a < X \leq b) = P(a \leq X < b) = P(a < X < b)$

Definition 2.2

Let X be a rv taking at most a countable number of values, $X(\Omega) = \{x_1, x_2, ...\}$. Then we say that X is a <u>discrete rv</u>.

Definition 2.3

Let X taking an infinite non countable number of values. If F_X is continuous, we say that <u>X is a continuous rv</u>.

Mass and density functions

Definition 3.1

Let X be a discrete rv,
$$X(\Omega) = \{x_1, x_2, ...\}$$
. p_X :

$$p_X(x_k) = P(X = x_k), \ k = 1, 2, ...$$

= mass function of X = probability law of X.

Definition 3.2

Let X be a <u>continuous rv</u>. The function f_X defined by (if it exists)

$$f_X(x) = \frac{d}{dx} F_X(x)$$

is called the probability density function of X.

<u>Thus</u> $f_X(x)dx \sim$ probability that rv X takes value x in a small interval of length dx around x.

Properties : i) $f_X(x) \ge 0$, because F_X is increasing; ii) $\int_{-\infty}^{x} f_X(t) dt = F_X(x)$ $- > \int_{-\infty}^{+\infty} f_X(x) dx = F_X(+\infty) = 1$

A positive function with this property is called a density (function). Important property

$$P(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

The probability that X belongs to the interval (a, b] is given by the area under the curve of f_X from a to b.

Random experiment E. Let $A \subset \Omega$ and let X be the indicator rv of this event A, that is X = 1 if we get A and 0 otherwise. We say that X follows a Bernoulli law with parameter p, where p = P(A) is the probability of a success. We have

$$\begin{array}{cccc} x & 0 & 1 & \Sigma \\ p_X(x) & 1-p & p & 1 \end{array}$$

We may also write

$$p_X(x) = p^x q^{1-x}$$
, $x = 0, 1$

where q = 1 - p. Here p is a known parameter.

We repeat the previous experiment E n times.

We then say that the trials $E_1, ..., E_n$ form <u>Bernoulli trials</u> if

a) these trials are independent and

b) the probabillity of a success is the same for each trial.

Binomial law

X : number of success with n Bernoulli trials.

X follows a bionomial law with parameters n and p, where p is the probability of one success. We have $X(\Omega) = \{0, 1, ..., n\}$. We write $X \sim B(n, p)$. Probability law of $X \sim B(n, p)$:

$$p_X(k) = C_k^n p^k q^{n-k}$$
, for $k = 0, 1, ..., n$

Geometric Law

X : number of necessary Bernoulli trials in order to obtain the first success. Then $X(\Omega) = \{1, 2, ...\}$. X follows a geometric law with parameter $p : X \sim Geom(p)$. In that case, we have

$$p_X(k) = q^{k-1}p$$
, pour $k = 1, 2, ...$

We have :

$$F_X(n) = ... = 1 - q^n$$
 et $P(X > n) = q^n$, $n = 1, 2, ...$

As a last remark, it may happen that we can also define another X denoted by Y, to be the number of Bernoulli trials before getting the first success. In that case $Y(\Omega) = \{0, 1, ..\}$ and function p_Y becomes

$$p_Y(k) = q^k p$$
, $k = 0, 1, ...$

Then Y = X - 1.

Definition 4.1

Let X be a drv with $X(\Omega) = \{0, 1, ...;\}$ and

$$p_X(k) = \frac{e^{-\alpha} \alpha^k}{k!}$$
 for $k = 0, 1, ...$

We then say that X follows a Poisson law with parameter $\alpha > 0$. We write $X \sim Poi(\alpha)$.

CRV/ Uniform Law

We choose at random a number X in the interval [a, b]. If the density function of X is given by

$$f_x(x) = rac{1}{b-a}$$
, $a \le x \le b$

we say that X follows a uniform law on the interval [a, b]. We write $X \sim U(a, b)$. Distribution function of X :

$$F_X(x) = 0$$
 if $x < a$, $\frac{x-a}{x-b}$ if $a \le x \le b$, 1 if $x > b$

If $[c, d] \subset [a, b]$, then

$$P(c < X \le d) = \frac{d-c}{b-a}$$

The probability for X to be in a given sub interval only depends on the length of this interval.

We say that X defined on $[0, +\infty)$ follows an exponential law with parameter λ if

$$f_X(x) = \lambda e^{-\lambda x}, x \ge 0$$

We write $X \sim Exp(\lambda)$. This is a density. The distribution function is given by

$$F_X(x) = e^{-\lambda x}$$
 if $x \ge 0$ and 0 if $x < 0$

In particuliar,

$$P(X > 0) = e^{-\lambda x}, x \ge 0$$

CRV/ Gamma law

Gamma function $\Gamma(.)$:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$$

pour $\alpha > 0$. I.B.P - > $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$, if $\alpha > 1$ If $\alpha = n = 2, 3, ...,$ then

$$\Gamma(n) = (n-1)!$$

Also :

$$\Gamma(1/2) = \sqrt{\pi}$$

Let X : a positive rv. If its density function is given by :

$$f_X(x) = rac{(\lambda x)^{lpha - 1} \lambda e^{-\lambda x}}{\Gamma(lpha)} ext{ for } x \geq 0,$$

we say that X follows a Gamma law wth parameters $\alpha > 0$ and $\lambda > 0$. We write $X \sim G(\alpha, \lambda)$.

Remarks 5.1

i) α : shape parameter; λ : scale parameter. As f_X has a shape which varies rapidly when parameter α takes different values, Gamma law is very often used in applications. ii) Gamma law = exponential law when $\alpha = 1$. iii) If $\alpha = n/2$, $n \in \mathbb{N}$ and $\lambda = 1/2$, Gamma law is also called khi-square law with 2 to n degrees of freedom. Let X be a rv with $X(\Omega) = \mathbb{R}$. If the density function of X is of the form

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}, x \in \mathbb{R}$$

we say that X follows a gaussian or normal law with parameters μ and σ^2 with $\sigma > 0$. We write $X \sim N(\mu, \sigma^2)$. It is also called Laplace-Gauss law. Parameter μ is a position paramter, while σ is a scale parameter. All gaussian laws have a bell shape. If $\mu = 0$ and $\sigma = 1$: X follows a <u>standard normal law</u>. Its density function is given by

$$\phi(z) \equiv \frac{1}{\sqrt{2\pi}} exp(-z^2/2), z \in \mathbb{R}$$

and its distribution function denoted by Φ , is

$$\Phi(z) = \int_{-\infty}^{z} \phi(y) dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-y^2/2} dy$$

IF $X \sim N(\mu, \sigma^2)$, -> distribution function in terms of Φ :

$$F_X(x) = \Phi(\frac{x-\mu}{\sigma})$$

corresponding density function given by

$$f_X(x) = \frac{1}{\sigma}\phi(\frac{x-\mu}{\sigma})$$

That is we can obtain everything from the standard law N(0, 1).

Definition 6.1

The expectation or the mean of a rv X, denoted by E(X) or equivalently by $\langle X \rangle$ is defined by

$$E(X) \equiv \mu_X = \begin{cases} \sum_{k=1}^{\infty} x_k p_X(x_k) \text{ if } X \text{ is discrete} \\ \\ \int_{-\infty}^{\infty} x f_X(x) dx \text{ if } X \text{ is continuous.} \end{cases}$$

The expectation is linear.

Proposition 6.1

Let X be a rv and Y = g(X). Then we have

$$E(Y) = \begin{cases} \sum_{k=0}^{\infty} g(x_k) p_X(x_k) \text{ if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx \text{ if } X \text{ is continuous} \end{cases}$$

Definition 6.2

The variance of rv X is defined by

$$Var(X) = \sigma_X^2 = E((X - E(X)^2))$$

If X has a density f_X , then we have

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

with $\mu = E(X)$. The standard deviation is defined by

$$STD(X) = \sigma_X = \sqrt{Var(X)}$$

We have

$$Var(aX + b) = a^2 Var(X)$$

and

$$Var(X) = E(X^2) - (E(X))^2$$

Law	Parameters	Mean	Variance
Bernoulli	р	р	pq
Binomial	n et p	np	npq
Geometric	р	1/p	q/p^2
Poisson	α	α	α

Law	Parameters	Mean	Variance
Uniform	[a, b]	(a+b)/2	$(b-a)^2/12$
Exponential	λ	$1/\lambda$	$1/\lambda^2$
Gaussian	μ and σ^2	μ	σ^2

Theorem 6.1

Bienaymé-Tchebychev inequality Let X be a rv with mean $\overline{E(X)} = \mu$ and variance $Var(X) = \sigma^2$. Then for any a > 0, we have

$$\mathsf{P}(|X-\mu| \ge \mathsf{a}) \le rac{\sigma^2}{\mathsf{a}^2}$$

Theorem 6.2

Markov inequality Let X be a positive rv. Then, for any a > 0

$$P(X \ge a) \le \frac{E(X)}{a}$$