MATH 1.1: LINEAR ALGEBRA

I. Course description:

1. Credit points: 3 ECTS

2. Time commitment:

Items	Lecture	Tutorial	Practical	Total
No. of hours	20	20	0	40

3. **Prerequisites:** None

4. **Recommended background knowledge:** College algebra.

5. Subject description:

Linear algebra is a fundamental mathematical tool used extensively in science and engineering disciplines. This course provides students with fundamental concepts of linear algebra: vectors, matrices, and the four important matrix subspaces, solving linear equations, matrix projection and diagonalization. Students will also be introduced to different applications of linear algebra.

6. **Objectives & Outcome:**

- Have a good understanding of the fundamental concepts of linear algebra, especially linear combinations, and the relationship among four matrix subspaces.
- Be able to solve linear equations for a complete solution
- Be able to use matrix projection to perform least square approximation and matrix orthogonalization
- Be able to perform singular value decomposition and understand its important in science and engineering
- Be exposed to some key applications of linear algebra.

7. Assessment/ Evaluation

Component	Attendance	Exercises	Assignments	Reports	Midterm	Final
Percentage %	10	20	0	0	20	50

8. Prescribed Textbook(s)

[1] Gilber Strang, Introduction to Linear Algebra., 4th edition, Wellesley-Cambridge Press, MA

II. Course content & schedule:

1. Matrices and Gauss Eliminations

- Linear Equations and elimination
- Matrices and operations
- Applicationss
- 2. Linear Equations
 - Inverse and Transpose matrices
 - Vectors Spaces and Subspaces
 - Linear Equations
- 3. Vector spaces
 - Linear Independence, Basis, Dimension
 - Four fundamental subspaces
- 4. Vector Spaces
 - Linear Transformations
 - Matrice of Linear Transformation
- 5. Orthogonality
 - Orthogonal Vectors and Subspaces
 - Orthonormal basis, Gram-Schmidt
- 6. Determinant
 - Properties, calculations
 - Applications
- 7. Mid-term exam
- 8. Egenvalues and eigenvactors
 - Diagonalization of a Matrix
 - Symmetric Matrices
- 9. Positive Definite Matrices
 - Minima, Maxima, saddle points
 - Singular Value Decomposition (SVD)
- 10. Some computations
 - Computation of Eigenvalues
 - Iterated Methods for Solving Linear Equations
- 11. Some applications

- Linear innequalities
- Game theory
- 12. Review

III. Reference Literature:

[1]. Gilber Strang, Introduction to Linear Algebra., 4th edition, Wellesley-Cambridge Press, MA, 2009.