MATH 1.1: LINEAR ALGEBRA

I. Course description:

1. Credit points: 3 ECTS

2. Time commitment:

Items	Lecture	Tutorial	Practical	Total
No. of hours	20	20	0	$\mathbf{4 0}$

3. Prerequisites: None
4. Recommended background knowledge: College algebra.
5. Subject description:

Linear algebra is a fundamental mathematical tool used extensively in science and engineering disciplines. This course provides students with fundamental concepts of linear algebra: vectors, matrices, and the four important matrix subspaces, solving linear equations, matrix projection and diagonalization. Students will also be introduced to different applications of linear algebra.

6. Objectives \& Outcome:

- Have a good understanding of the fundamental concepts of linear algebra, especially linear combinations, and the relationship among four matrix subspaces.
- Be able to solve linear equations for a complete solution
- Be able to use matrix projection to perform least square approximation and matrix orthogonalization
- Be able to perform singular value decomposition and understand its important in science and engineering
- Be exposed to some key applications of linear algebra.

7. Assessment/ Evaluation

Component	Attendance	Exercises	Assignments	Reports	Midterm	Final
Percentage $\%$	10	20	0	0	20	50

8. Prescribed Textbook(s)

[1] Gilber Strang, Introduction to Linear Algebra., 4th edition, Wellesley-Cambridge Press, MA

II. Course content \& schedule:

1. Matrices and Gauss Eliminations

- Linear Equations and elimination
- Matrices and operations
- Applicationss

2. Linear Equations

- Inverse and Transpose matrices
- Vectors Spaces and Subspaces
- Linear Equations

3. Vector spaces

- Linear Independence, Basis, Dimension
- Four fundamental subspaces

4. Vector Spaces

- Linear Transformations
- Matrice of Linear Transformation

5. Orthogonality

- Orthogonal Vectors and Subspaces
- Orthonormal basis, Gram-Schmidt

6. Determinant

- Properties, calculations
- Applications

7. Mid-term exam
8. Egenvalues and eigenvactors

- Diagonalization of a Matrix
- Symmetric Matrices

9. Positive Definite Matrices

- Minima, Maxima, saddle points
- Singular Value Decomposition (SVD)

10. Some computations

- Computation of Eigenvalues
- Iterated Methods for Solving Linear Equations

11. Some applications

- Linear innequalities
- Game theory

12. Review

III. Reference Literature:

[1]. Gilber Strang, Introduction to Linear Algebra., 4th edition, Wellesley-Cambridge Press, MA, 2009.

