MATH 1.5: CALCULUS II

I. Course description:

1. Credit points: 3 ECTS

2. Time commitment:

Items	Lecture	Tutorial	Practical	Total
No. of hours	24	12	0	$\mathbf{3 6}$

3. Prerequisites: Calculus I.
4. Recommended background knowledge: N/A.

5. Subject description:

This course is the continuation of Calculus I and focuses on multivariable calculus, vector calculus and ordinary differential equations.
6. Objectives \& Outcome:
7. Assessment/ Evaluation

Component	Attendance	Exercises	Assignments	Reports	Midterm	Final
Percentage $\%$	5	5	0	0	30	60

8. Prescribed Textbook(s):
[1] James Stewart, CALCULUS, Early Transcendentals, 7th Edition, Thomson Books/Cole, 2012.
[2]. James C. Robinson, An introduction to Ordinary Differential Equations, Cambridge Univ. Press, 2004.
[3] Giáo trình Toán cao cấp I, II, III, Nguyễn Đình Trí, NXB Giáo dục 2005.

II. Course content \& schedule:

1. Vectors

- Vectors in general
- The dot product
- The cross product

2. Functions of several variables

- Graphs and surfaces
- Limits and continuity
- Partial derivatives and the differential
- Gradient and directional derivatives
- The chain rule
- Second-order partial derivative

3. Optimization

- Critical points : local extrema
- Optimization
- Lagrange multiplier

4. Integrating functions of several variables

- The definite integral of a function of two variables
- Iterated integrals, Fubini's theorem
- Triple integrals
- Double integrals in polar coordinates
- Integrals in cylindrical, spherical coordinates

5. Line and surface integrals. Stoke and Green theorems

- Line integrals
- Flux integrals and divergence
- Curl and Stoke's theorem

6. First-order ordinary differential equation

- Euler's method
- Separation of variables
- Applications and modeling

7. Second-order ordinary differential equations (constant coefficients)

- General theory : existence and uniqueness, linearity
- The Wronskian
- Homogeneous and inhomogeneous second-order linear equations.

